Publication

Life Cycle Energy, Environmental and Economic Comparative Analysis of CdTe Thin-film Photovoltaics Domestic and Overseas Manufacturing Scenarios

Yuan Yao and 1 other contributor

On This Page

    Abstract

    Solar energy is one of the most promising renewable energy alternatives for the replacement of traditional fossil fuels. CdTe photovoltaics (PVs) are thin-film solar cells that have the highest market share among all thin-film technologies. Previous LCA studies of CdTe PVs were based on the data from countries that have similar level of industrialization and strict environmental policies. Thus, to date, no LCA results have explored impacts of dramatic geographic diversity on environmental performance of CdTe PVs. Furthermore, few LCAs for CdTe PVs have taken uncertainty, which is an often overlooked but important aspect, into consideration. In this paper, we apply a " Cradle to Gate" LCA to two scenarios in China and the U. S. respectively and calculate the corresponding energy payback time and life cycle environmental impacts. Then, an uncertainty analysis is undertaken through Monte Carlo simulation. Both deterministic and uncertainty-based results indicate that geographic diversity can drastically change performance of CdTe PVs on environmental sustainability. However, this diversity of production locations has no correlation with other uncertain parameters. Results of uncertainty analysis indicate the influence of each parameter and provide guidance for future optimization of CdTe technology. Finally, comparison between CdTe and other PV technologies is displayed and discussed.