Publication

Opposite effects of daytime and nighttime warming on top-down control of plant diversity

Oswald Schmitz and 1 other contributor

On This Page

    Abstract

    Ecological analyses of climate warming explore how rising mean temperature will affect the species composition of communities and their associated functioning. Experimentation usually presumes that warming arises from simultaneous increase in daily maximum (daytime) and minimum (nighttime) temperatures. Yet evidence shows that mean warming arises largely from increasing nighttime temperatures. We report on a 3-yr experiment that compared the effects of daytime and nighttime warming on a community comprising herbaceous plants, grasshopper herbivores and predatory spiders. We warmed experimental mesocosms 3-4 degrees C above ambient control treatments during the daytime (06:00-18:00h) or nighttime (18:00-06:00h). Daytime warming caused spiders to seek a thermal refuge low in the plant canopy and away from grasshopper prey, which allowed grasshoppers to spend more time feeding on a competitively dominant plant species. Nighttime had the opposite effect, where spider activity increased causing grasshoppers to reduce feeding. Two consecutive years of daytime warming resulted in a suppression of the competitive dominant plant and increased the diversity and evenness of the plant community, whereas nighttime warming had opposite effects. These results show that ignoring the nuanced effects of asymmetrical warming may lead to inaccurate conclusions about the net effects of climate change on ecosystems.