Publication

No strong evidence for increasing liana abundance in the Myristicaceae of a Neotropical aseasonal rain forest

Simon Queenborough and 4 other contributors

On This Page

    Abstract

    The "liana dominance hypothesis" posits that lianas are increasing in abundance in tropical forests, thereby potentially reducing tree biomass due to competitive interactions between trees and lianas. This scenario has implications not only for forest ecosystem function and species composition, but also climate change given the mass of carbon stored in tropical trees. In 2003 and 2013, all Myristicaceae trees in the 50-ha Yasuni Forest Dynamics Plot, Ecuador, were surveyed for liana presence and load in their crowns. We tested the hypothesis that the proportion of trees with lianas increased between 2003 and 2013 in line with the liana dominance hypothesis. Contrary to expectations, the total proportion of trees with lianas decreased from 35% to 32%, and when only trees >= 10 cm diameter at breast height were considered liana incidence increased 44-48%. Liana load was dynamic with a large proportion of trees losing or gaining lianas over the 10-yr period; large trees with intermediate liana loads increased in proportion at the expense of those with low and high loads. Lianas also impacted performance: trees with 26-75% crown cover by lianas in 2003 had reduced growth rates of 80% compared to of liana-free trees, and trees with >75% crown cover had 33% the growth rate and a log odds of mortality eight times that of liana-free trees. We suggest that the lack of strong support found for the liana dominance hypothesis is likely due to the aseasonal climate of Yasuni, which limits the competitive advantage lianas maintain over trees during dry seasons due to their efficient capture and use of water. We propose further research of long-term liana dynamics from aseasonal forests is required to determine the generality of the increasing liana dominance hypothesis in Neotropical forests.