Publication

Impact of Large-Scale Afforestation on Surface Temperature: A Case Study in the Kubuqi Desert, Inner Mongolia Based on the WRF Model

Xuhui Lee and 8 other contributors

On This Page

    Abstract

    Afforestation activities in the Kubuqi Desert, Inner Mongolia, China, have substantially increased tree and shrub coverage in this region. In this study, the response of the surface temperature to afforestation is simulated with the Weather Research and Forecasting model. The surface temperature changes are decomposed into contributions from the intrinsic surface biophysical effect and atmospheric feedback, using the theory of intrinsic biophysical mechanism. The effect of afforestation on the surface temperature is 1.34 K, -0.48 K, 2.09 K and 0.22 K for the summer daytime, the summer nighttime, the winter daytime and the winter nighttime, respectively, for the grid cells that have experienced conversion from bare soil to shrub. The corresponding domain mean values are 0.15 K, -0.2 K, 0.67 K, and 0.06 K. The seasonal variation of surface temperature change is mainly caused by changes in roughness and Bowen ratio. In the daytime, the surface temperature changes are dominated by the biophysical effect, with albedo change being the main biophysical factor. In the nighttime, the biophysical effect (mainly associated with roughness change) and the atmospheric feedback (mainly associated with change in the background air temperature) contribute similar amounts to the surface temperature changes. We conclude that the atmospheric feedback can amplify the influence of the surface biophysical effect, especially in the nighttime.