Publication

Developmental changes in habitat associations of tropical trees

Liza Comita and 2 other contributors

On This Page

    Abstract

    1 Recent studies have documented local-scale associations between tree species and topographic and edaphic habitat types in forests worldwide. To determine whether such associations form at early life stages, we compared species' positive associations with five habitat types (high plateau, low plateau, slope, streamside, and swamp) at two life stages for 80 tree and shrub species in a Panamanian lowland forest. 2 Nineteen significant, positive habitat associations were detected at the small tree stage (seedlings and saplings >= 20 cm tall and < 1 cm d.b.h.), and 18 at the large tree stage (individuals >= 1 cm d.b.h.), according to results of torus-translation randomization tests. The majority of species did not show consistent associations at the two stages. Of the 30 species significantly associated with a habitat, only five were associated with the same habitat at both stages. Overall, more species were associated with the wetter slope habitat at the large tree stage compared with the small tree stage. 3 For a subset of species, we examined the relationship between observed habitat associations and seed dispersal and seedling establishment patterns by using species-specific seed dispersal kernels to predict seed rain into each habitat. 4 Two-thirds of species associated with a habitat at the large tree stage had higher predicted seed densities in the associated habitat relative to other habitat types, indicating that limited seed dispersal acts to reinforce habitat associations for most species. In contrast, only one-third of the species associated with a habitat at the large tree stage showed evidence of higher seedling establishment rates in the associated habitat compared with other habitats, and an equal number of species appeared to have lower rates of establishment in the habitat that large trees of the species were associated with. 5 Overall, our results indicate that habitat associations of large trees typically do not form at early life stages. Rather, many species appear to exhibit different ecological habitat preferences across life stages. Future studies of species' habitat associations should therefore include multiple life stages in order to detect developmental shifts in ecological preferences.