Publication

Evaluating Mechanisms of Short-term Woodland Salamander Response to Forest Management

On This Page

    Abstract

    Contemporary forest management often requires meeting diverse ecological objectives including maintaining ecosystem function and promoting biodiversity through timber harvesting. Wildlife are essential in this process by providing ecological services that can facilitate forest resiliency in response to timber harvesting. However, the mechanisms driving species' responses remain ambiguous. The goal of this study was to assess mechanisms influencing eastern red-backed salamander (RBS; Plethodon cinereus) response to overstory cover removal. We evaluated two mitigation strategies for the RBS in response to overstory removal. We used a before-after-control-impact design to study how (1) retaining residual trees or (2) eliminating soil compaction affected RBS surface counts and body condition index (BCI) up to two-years post-treatment. Additionally, we assessed how surface counts of RBS were influenced by overstory tree cover. Surface counts of RBS were not strongly influenced by overstory removal when tree residuals were retained. Body condition index increased in treatments where harvest residuals were retained. In treatments where soil compaction was eliminated, surface counts and BCI were inversely related. Finally, surface counts from both mitigation strategies were not strongly influenced by overstory cover. Overall, both mitigation techniques appeared to ameliorate impacts of overstory removal on RBS. These results highlight the importance of understanding mechanisms driving species' responses to forest management. To reduce the perceived negative effects of overstory removal on RBS, incorporating these mitigation measures may contribute to the viability and stability of RBS populations. Incorporating species' life history traits into management strategies could increase continuity of ecological function and integrity through harvesting.