To address environmental issues, society needs a deeper understanding of the natural world, and the ways we can regulate our own behavior. Faculty and students at F&ES conduct research in eight broadly conceived areas of environmental concern – biodiversity, forestry, global climate, industry, law and economics, urban systems, water, and social ecology. The scope of these programs reflects not just the complexity of human interaction with the environment, but the fact that the easy answers have been exhausted. As such, it is the mission of the F&ES faculty and students to conduct research that uncovers new knowledge, unique insights, and approaches that tie many fields together. This mission is further carried out by communicating the results of this research to the widest possible audience through publication, lectures, and other educational programs.

F&ES Research Funding

New Project Funding: Craig Brodersen

Structure and Function of Whole-tree 3D Xylem Networks in Response to Past, Present, and Future Drought
PI: Craig Brodersen
Sponsor: National Science Foundation $463,788
Summary: Forest productivity is directly linked to the growth and maintenance of plant vascular systems that transport water from the soil to the leaves. Water is transported to the top of the canopy under below atmospheric pressure through a network of thousands of interconnected conduits collectively known as xylem. During drought tension on the xylem sap grows, leading to the formation of air bubbles in the xylem that spread from vessel to vessel, blocking water transport, reducing photosynthesis, and ultimately leading to death. Current theory suggests that this rapid loss of conductivity occurs at specific threshold, or tipping point, yet these tipping points are not well defined for most species, nor are the underlying mechanisms. Across the planet, tree species live precariously close to their physiological tipping point, and further climate change will undoubtedly unseat a number of tree species from their dominant positions in many ecosystems (Choat et al. 2012). Our ability to predict and plan for the conservation and management of our forest resources directly depends on our knowledge of water transport through plants. How trees organize the spatial distribution of xylem conduits and connections that either facilitate water and nutrient distribution, or prevent the spread of embolism is, therefore a key component to plant survival. Surprisingly, these traits persist as one of the most prominent gaps in our understanding of plant structure and function. Much of this uncertainty stems from our primitive understanding of 3D xylem connectivity and the difficulty in studying its spatial organization; the conduits are small, the tissue is opaque, and cutting into the tissue destroys the structure and obscures its function. Over the past eight years we have developed high resolution X-ray computed tomography (microCT) to move beyond traditional 2D microscopy with the specific goal of exploring 3D xylem network structure and function.

New Project Funding: Michelle Bell

EPA Logo
SEARCH: Solutions for Energy, AiR, Climate, and Health
PI: Michelle Bell
Sponsor: EPA Air, Climate And Energy (ACE) Centers $9,999,990
Summary: SEARCH (Solutions for Energy, AiR, Climate, and Health) Center is a collaborative effort principally between Yale and Johns Hopkins Universities. The research conducted by this Center is motivated by the importance of impending major energy transitions facing the US over the next several decades. These transitions potentially interact with climate change and the responses to climate change, and all have potentially serious implications for regional air quality and thereby human health.  In addition these transitions encompass modifiable factors that can be changed to drive improved air quality.  The goal of the SEARCH Center is to characterize factors contributing to emissions, air quality and health associated with key energy energy-related transitions in order to understand how these factors affect regional and local differences in air pollution and public health effects.  In addition we hope to identify key modifiable factors (e.g. transportation sources, and power generation) and how those factors and their air pollution impacts are likely to change over time.

New Project Funding: Mary Tyrrell

USFS logo
Support for Tribal Student Travel to Yale-ITC Symposium
PI: Mary Tyrrell
Sponsor: US Forest Service $5,000
Summary: The Yale School of Forestry & Environmental Studies co-hosted a symposium with the Intertribal Timber Council to explore some of the key challenges in Indian forestry management illustrated in the Third Indian Forestry Management Assessment Team report (IFMAT-III). The symposium focused on two principle areas: (1) reforming the federal trust relationship between Tribal Nations and the federal government as it pertains to forestry; and (2) workforce development to train the next generation of forestry and natural resource professionals for Tribal Nations. Eighteen young tribal members, who are studying natural resource management and forestry, were invited to attend the summit and participate in the discussion with the tribal resource managers, Yale students, and agency personnel.

New Project Funding: Tom Graedel

United States Criticality Scenarios, 2015-2050
PI: Thomas Graedel
Sponsor: Critical Materials Institute, The Ames Laboratory (Dept. of Energy) $164,998
Summary: Issues of immediate scarcity of materials are of vital importance to the U.S. national economy, but equally important is the potential for scarcity in the longer term. As a component of the materials criticality research at Yale University, we are developing a set of global-level scenarios for material supply and demand for the period 2015-2050. These scenarios are not predictions, but are visions of several feasible patterns of global development that are materials-relevant. They have the potential to address more than sixty different materials of potential interest, including catalyst metals, individual rare earths, and other energy-related elements. We propose to extend this analysis to generate detailed scenario results for a group of clean energy materials at the United States level, to include treatment of global and domestic supply, demand, and criticality. The results will provide policy-relevant information and insight for the U.S. Government and for U.S. corporations.

New Project Funding: Sara Kuebbing

EAGER: Collaborative Research: Comprehensive Analysis of Long Term Ecological Research Survey
Yale PI: Sara Kuebbing, Postdoctoral Associate in collaboration with PI Adam Reimer (Michigan State)
Sponsor: National Science Foundation $18,149
Summary: Long-term ecological research has the potential to provide significant insights in the fields of ecology and evolutionary biology. Despite widespread recognition of the importance of long-term research by scientists and research institutions, gaps in research priorities and experimental design still exist. To identify and prioritize opportunities for future long-term research, researchers at Yale and Michigan State University conducted a survey to gather the opinions and views of ecologists and evolutionary biologists. This proposal seeks to conduct comprehensive analysis of this dataset, with over 1,100 responses from scientists nationwide. A cursory analysis of this dataset at a workshop in early 2015 demonstrated that this survey dataset was rich in ideas for future research, opportunities that could potentially facilitate this research, and barriers that could inhibit successful long-term research. Because the survey responses represent the views of a large proportion of practicing researchers and scientists within these fields, including researchers that are not currently engaged in long-term research, the analysis of this comprehensive dataset has the potential to stimulate and redirect long-term ecological research within the fields of ecology and evolutionary biology.
This research will analyze these survey data using standard social science methods. The survey dataset includes a combination of quantitative (ordinal and categorical) questions and qualitative (open-ended) questions. Using thematic coding, open-ended questions (which were used to solicit research priorities, opportunities, and barriers) will be transformed into categorical variables that can be analyzed quantitatively. Survey analysis will include both a broad categorization of the views of the field as a whole as well as an exploration of differences in opinions and priorities based on respondent subfield, experience, institution type, and geographic focus. Survey analysis will be primarily quantitative, including descriptive characterization of responses and comparison of mean responses among subgroups of respondents to test for differences.

New Project Funding: Alex Felson

Baltimore Earth Stewardship Initiative Demonstration Project
PI: Alex Felson
Sponsor: National Science Foundation $14,994
Summary: The Earth Stewardship Initiative demonstration project brings together city managers, designers, community leaders and ecologists to envision the future of Baltimore’s people and neighborhoods, infrastructure and ecosystems. The program is part of the Ecological Society of America’s (ESA) Earth Stewardship Initiative and is organized to coincide with and harness the ESA’s Centennial meeting in Baltimore, Maryland. The project extends from the successful first Earth Stewardship Initiative (ESI) Demonstration project initiated last year in Sacramento, California. This year’s initiative seeks to link community perspectives on neighborhoods, green space, and environmental stewardship with urban ecological researchers interested in studying and shaping urban environments and strengthening communities. Teams include Baltimore City officials, the Parks & People Foundation, Baltimore Waters, Baltimore Ecosystem Study scientists, and professional firms seeking to incorporate ecological science into a community-based planning, education, and outreach process. Teams will add value to ongoing green infrastructure projects through a series of steps that bring together ecological research experiments with community planning and urban ecosystems functioning. The values and obstacles of this approach revealed through this demonstration project can be used to inform future efforts to pursue earth stewardship and develop integrated efforts toward ecosystem resilience and human health. ESI Fellows, ecology and design students from around North America, will play an essential role within a multidisciplinary framework of local practitioners, stakeholders, and community-based groups to contribute to actual planning projects. Through this summer effort and a fall course at Yale, we hope to improve implementable plans to enhance resiliency, promote biodiversity and habitats, while engaging in revitalization efforts and supporting community health, education, and outreach objectives.

New Project Funding: Mark Bradford

Understanding local controls on wood decomposition in a regional context
PI: Mark Bradford
Sponsor: National Science Foundation $149,901

Summary: A critical determinant of the carbon balance of forests is the rate at which dead wood decays. This is determined by the rate at which dead wood is formed and the rate at which it breaks down, or decomposes. Dead wood is also a hotspot for other nutrients to accumulate and it is a home for many species of animals, plants and microbes. Because trees contain a lot of carbon, our understanding of how the carbon cycle might be changing requires a better understanding of the wood decomposition process. With that in mind, this project will decompose logs from five common US tree species across a gradient spanning northeastern to southeastern US temperate forests. Potential controls on wood decomposition rates will be manipulated experimentally, such as the density of dead wood and the types of wood-decomposing fungi growing on the logs. Other factors, such as soil nutrient content, temperature and moisture will be monitored. The tree logs will be collected after a year of decay in the field and brought into the laboratory to assess their decomposition extent and associated wood-decaying fungi. The data will then be analyzed to determine wood decomposition rates under the different conditions. Information from this project will be used to refine predictions of carbon-cycle changes and the effects of environmental change on forests. The results will also provide guidance to the forest industry on management of dead wood stocks in forest. The importance of natural wood decay will be communicated through a collaborative effort with the Peabody Museum of Natural History, by creating "living" dead wood exhibits for public display and use in educating visiting middle-school students.

New Project Funding: Liza Comita

Collaborative Research: Genetic diversity, resistance genes, and negative density dependence in tropical tree seedling dynamics
Yale PI: Liza Comita, in collaboration with PI James Marden and Co-PI Claude dePamphilis (Penn State), and PI Scott Mangan (Washington Univ/STRI)
Sponsor: National Science Foundation $158,545

Summary: Negative density dependence (NDD), i.e., reduced growth or survival with increasing densities of conspecific neighbors, has long been recognized to play a role in maintaining diversity in species rich communities, such as tropical forests. Recent studies have revealed that NDD is also related to species abundances within local communities. Specifically, locally rare tree species suffer more from the density and proximity of conspecific neighbors than common species, primarily due to attack by host-specific soil pathogens. This project will test a novel hypothesis to explain this pattern: rare species suffer stronger negative conspecific effects because they have reduced polymorphism at the local population and seedling cohort level in their resistance (R) genes. The rationale is that rare species are likely to have experienced genetic bottlenecks, inbreeding, drift, and have fewer pollen donors, all of which can reduce the genetic diversity of their offspring, including critical R genes, which undergo diversifying selection. Thus, seedling cohorts of rare species, being more homogeneous in R gene alleles, are likely to be co-susceptible to more pathogens (and the neighbors that harbor and spread them) than common species, which would in turn serve to keep them rare. We will test this hypothesis in an intensively studied forest on Barro Colorado Island (BCI), Panama using an integrated combination of transcriptomics, experimental studies of pathogen-mediated seedling mortality, and spatially explicit simulations to examine effects of distance and genetic similarity on disease transmission.

New Project Funding: Xuhui Lee

Deuterium Excess of Water Vapor in the Atmospheric Boundary Layer
PI: Xuhui Lee
Sponsor: National Science Foundation $467,517

Summary: This research will explore the utility of water vapor isotope observations for attribution of vapor to remote source regions, local influences and transport in the atmospheric boundary layer (ABL). The emphasis is on “deuterium excess” (dx) of water vapor, a measure of the relative abundance of the D and 18O isotopologues of water. The research methodology consists of data analysis and ABL modeling. The dx data are hourly observations made with laser-based instruments in 11 climate zones in North America and in Asia. An isotopic land surface model will be used to quantify local evapotranspiration effects on the observed variations in dx. Equilibrium boundary layer calculations and large-eddy simulations will be used to infer the dx signal of the vapor in the free atmosphere and its entrainment effect on the ABL dx. Trajectory analysis will identify contributions from remote source regions. The project will yield new isotopic constraints on the linkage between the atmospheric and the land branches of the hydrological cycle.

New Project Funding: Peter Raymond

Collaborative Research: Linking microbial diversity, gene expression, and the transformation of terrestrial organic matter in major U.S. rivers
Yale PI: Peter Raymond, in collaboration with PI Byron Crump (Oregon State), Co-PI George Aiken (USGS), and PI Aron Stubbins (Univ. of Georgia)
Sponsor: National Science Foundation $293,972

Summary: Rivers are the principle conduits between the major global organic carbon stores on land and those in the ocean. Dissolved organic matter (DOM) is a master variable in rivers, impacting light attenuation, metal transport, and metabolism. Riverine bacteria rely on DOM for sustenance and, in using DOM, respire a fraction and alter the composition of the remaining DOM. The relationship between microbes and DOM is a crucial but poorly understood shaper of river ecosystem function. One major gap is our understanding of specific metabolic capabilities of bacteria and how they interact with organic matter quality to carry out the key ecosystem function of transforming and metabolizing riverborne DOM. Integrating new and cutting-edge tools in genetics and DOM geochemistry, this project will describe in molecular detail the ecological and genetic mechanisms by which terrestrial DOM is modified and mineralized to carbon dioxide during transport from land to sea by determining the interactions and feedbacks between microbial functional diversity, gene expression, and DOM metabolism in U.S. rivers.

New Project Funding: Jennifer Marlon & Anthony Leiserowitz

Collaborative Research: Multi-scale Modeling of Public Perceptions of Heat Wave Risk
Yale Co-PIs: Jennifer Marlon and Anthony Leiserowitz, in collaboration with PI Peter Howe (Utah State)
Sponsor: National Science Foundation $223,141

Summary: This project will investigate how personal experience and local context shapes risk perceptions and responses to heat waves. Extreme heat events are currently the leading weather-related cause of death in the U.S. and have numerous impacts on vital social systems including food, water, energy and infrastructure. Extreme heat events are also projected to become more frequent and intense over the 21st century. It is vital to understand how both the public at large and vulnerable populations perceive the risks of extreme heat, how they decide to take action to mitigate these risks, and how their prior experiences shape future responses. This project will collect nationally representative survey data on heat wave risk perceptions, develop a multilevel model to identify individual and socio-environmental predictors of risk perceptions, and implement the model to map risk perceptions across the U.S.

New Project Funding: Jacob Bukoski (Advisor: Rob Bailis)

Assessing Heterogeneity in Organic Municipal Solid Waste for Optimized Urban Biogas Production
Fellow: Jacob Bukoski, MESc Student
Sponsor: NSF Graduate Research Fellowship Program (GRFP)
Summary: Bangkok currently produces one of the highest municipal solid waste generation rates of megacities within the developing world, at over 11,000 tons per day. The majority of Bangkok’s organic fraction of municipal solid waste (OFMSW) is landfilled, with adverse impacts on both public health and the environment through degradation of water resources and large releases of the potent greenhouse gas methane. One commonly accepted method for management of OFMSW is anaerobic digestion (AD). Anaerobic digestion of OFMSW has numerous benefits: voluminous production of biogas (a biogenic gas that may be combusted for electricity and heat production), reduction of landfilled waste volume, reduction of methane emissions, and production of a high-quality organic fertilizer by-product. However, variations in biochemical composition of organic waste streams largely dictate the stability of biogas production, as heterogeneities in feedstocks can cause inhibition of the microbiological processes that produce biogas. For example, significant differences in moisture content between two areas may necessitate the implementation of different AD technologies, such as wet, dry, or a wet-dry combination of AD. Additionally, OFMSW collection infrastructures can be complicated and expensive due to waste originating from numerous sources over large spatial areas. Understanding how generation of OFMSW varies over urban to exurban spatial scales will better inform strategic homogenization of AD feedstock waste streams, more efficient collection infrastructure, and appropriate siting of future biogas production plants for the sustainable management of OFMSW.

New Project Funding: Alark Saxena & Chad Oliver

USAID logo
Develop a Pilot-Integrated Forest Landscape and Livelihood Management Tool for REDD+ in India
PI: Alark Saxena; Co-PI: Chad Oliver
Sponsor: Tetra Tech ARD (Prime: USAID) $61,250

Summary: The final deliverable through this contract is a pilot (Proof of concept) Integrated Forest Landscape and Livelihood Management System (ILLMS) that will be responsive to stakeholders’ requirements, and tested in application in Madhya Pradesh Forest-PLUS landscapes in India. The Pilot integrated tool will be able to demonstrate the temporal growth and dynamics of forests in the area. It will also be able to model the consequences of different forest management policy options from forest carbon, bio-diversity and household livelihood point of view. If the concept does prove useful and feasible Forest-PLUS may support further steps to deploy ILLMS in other landscapes in India, to provide training in its use in SFDs, and to institutionalize ILLMS in forestry practice and management.

New Project Funding: Arthur Middleton

USFS logo
Wiggins Fork Elk Herd Migration Study
PI: Arthur Middleton, Postdoctoral Fellow
Sponsor: U.S. Forest Service - Shoshone National Forest $16,547

Summary: Middleton is currently conducting a study of elk migration across the Greater Yellowstone Ecosystem (GYE). The study relies mostly on the analysis of existing data from GPS collared elk, which are available for all but one of the major elk herds in the GYE. No GPS collar data exists for the Wiggins Fork elk herd, which summers largely on the Shoshone and Bridger-Teton National Forests and migrates to mixed-ownership winter ranges near Dubois, Wyoming. This is the one elk herd in the GYE for which fine scale spatial and temporal information on migration are not available. The goal of this project is to capture approximately 15 elk from the Wiggins Fork herd on their winter range, and then instrument them with GPS collars capable of gathering fine scale movement data for two years. This work will complete the dataset needed for the ecosystem-wide analysis of elk migration.

New Project Funding: Marian Chertow

The Fourth Symposium on Industrial Ecology for Young Professionals (SIEYP IV)
PI: Marian Chertow
Sponsor: National Science Foundation $49,775

Summary: Funding will support the fourth Symposium on Industrial Ecology for Young Professionals (SIEYP IV), to be held in Surrey, UK on July 11, 2015. Following the first three symposiums on Industrial Ecology for Young Professionals in 2009, 2011, and 2013, SIEYP IV is to be held in connection and immediately following the biannual International Society for Industrial Ecology (ISIE) conference, and is planned, organized, and attended by students and young professionals. It aims at promoting communication among graduate students and post-doctoral researchers in industrial ecology (IE) about their research, ideas, and experiences. This project is organized by the Student Chapter of the International Society for Industrial Ecology in an effort to encourage and financially support participation by students and post-doctoral researchers in the symposium and the ISIE 2015 Conference immediately preceding it. The theme of SIEYP IV is "Envisioning Future Agendas in Industrial Ecology", reflecting the themes and objectives of the biannual ISIE conference it follows.

New Project Funding: Karen Seto

NASA logo
Synthesis of LCLUC studies on Urbanization: State of the Art, Gaps in Knowledge, and New Directions for Remote Sensing Science
PI: Karen Seto
Sponsor: National Aeronautics and Space Administration $779,991

Summary: The overarching goal of the proposed research is to formulate an assessment of the patterns, drivers, and outcomes of global urban LCLUC from 1972 to 2014 by synthesizing existing remote sensing research and published studies from around the world. We aim to assess how the myriad urban remote sensing studies contribute to advancing fundamental and theoretical knowledge of urbanization, sustainability, and the functioning of the Earth system. This synthesis project will examine five key research questions. Question 1. What are the existing and available remotely sensed datasets and analyses on urban LCLUC? Question 2. What are the available change detection algorithms to characterize urban LCLUC and can we develop best practices to guide which change detection algorithms to apply across different geographies, conditions, and applications? Question 3. What are spatial patterns of urban LCLUC and how do they vary across place, time, and economic development levels? Question 4. What are the socioeconomic and policy drivers of urban LCLUC across different world regions, stages of economic development, and land use histories? Question 5. What are the effects of urban LCLUC on other land uses and land covers?

New Project Funding: James Saiers

RAPID, GOALI: Evaluating Groundwater Quality Impacts of Shale Gas Extraction within the Marcellus Shale Play
PI: James Saiers; Co-PI: Karen Olson (Southwestern Energy)
Sponsor: National Science Foundation $151,182

Summary: The question that guides this study is "Does shale gas extraction lead to contamination of freshwater aquifers by methane, deep-formation brines, or frac-water chemicals?" To address this question, a suite of measurements will be made in freshwater aquifers that underlie portions of Susquehanna County, PA, a "sweet spot" of the Marcellus Shale Play. Analysis of these measurements will allow us to: (i) elucidate the spatial and temporal variations in methane concentrations and isotopic composition that occur naturally, prior to commencement of gas extraction activities; (ii) quantify perturbations in groundwater flow that are attributable to any step in the process of shale gas development; and (iii) evaluate changes in the chemical composition of groundwater induced by hydraulic fracturing and other stages of shale gas extraction.

New Project Funding: Craig Brodersen

Optical and Physical Deterrent for preventing ACP vector attack on Citrus
Yale PI: Craig Brodersen
Sponsor: University of Florida (Prime: Citrus Research and Development Foundation) $15,000

Summary: The long-term goal of this project is to develop a foliar kaolin particle film technology targeting specific wavelengths that will alter the feeding and oviposition behavior of Asian citrus Psyllid (ACP).

New Project Funding: Eli Fenichel

US-UK Collab: Risks of Animal and Plant Infectious Diseases through Trade (RAPID Trade)
PI: Eli Fenichel
Sponsor: Arizona State University (Prime: National Science Foundation) $140,990

Summary: World trade is a boon to economic development but it also increases the risk of dispersing human, animal, and plant diseases. Disease impacts on crop yields and livestock put global food supplies at risk and newly emergent diseases that move from animals to humans can threaten human health. But because trade is also one of the main drivers of economic development, it is important that it not be disrupted unnecessarily by measures to protect against disease risk. Striking the right balance is currently difficult to achieve, however, because trade impacts are not systematically incorporated into national and international disease risk assessments. This award supports an interdisciplinary and international team who seek to solve that problem by developing new tools for evaluating the disease risks of world trade. The risk assessment tools produced by the project will provide animal, plant, and human health authorities at national and international levels with the capacity to make improved assessment of the disease risks associated with imports, and of the consequences of alternative trade responses. Improving disease risk management will enhance national security and economic well-being by reducing both disease dispersal and the losses caused by trade interdictions. The project also will strengthen collaborations between US and UK scientists and train graduate students and post-doctoral scientists in research.

New Project Funding: Mary Tyrrell

USFS logo
Hudson to Housatonic Conservation Initiative: Engaging Family Forest Owners in the Stewardship and Conservation of Climate Resilient Habitat and Contributing Tributaries to Reservoirs in Westchester County, NY and Fairfield County, CT
PI: Mary Tyrrell
Sponsor: Highstead Foundation (Prime: USDA Forest Service) $10,000
Summary: Yale’s Global Institute of Sustainable Forestry, as the lead coordinator of the Sustaining Family Forests Initiative, conducted a Tools for Engaging Landowners Effectively (TELE) workshop for the Hudson to Housatonic Conservation Initiative: Engaging Family Forest Owners in the Stewardship and Conservation of Climate Resilient Habitat and Contributing Tributaries to Reservoirs in Westchester County, NY and Fairfield County, CT. The 2-day TELE workshop covered the basic social marketing approach to landowner outreach, a review of landowner data for the region, and small group work on a case example of how to structure an effective outreach program.

New Project Funding: Anthony Leiserowitz

TV Weathercasters and Climate Education: Expanding the Reach of Climate Matters
PI: Anthony Leiserowitz
Sponsor: George Mason University (Prime: National Science Foundation) $282,533

Summary: The Yale Project on Climate Change Communication (YPCCC) will oversee the design and implementation of two Climate Science Workshops per year, as well as ongoing professional development, for TV Weathercasters.  One workshop will be held at each of the national annual meetings of the American Meteorological Society and the National Weather Association (2014-2015; 2015-2016; 2016-2017). 

New Project Funding: Nadine Unger

NASA logo
Linking multi-scale measurements and models to advance understanding of BVOC-chemistry-climate feedbacks
PI: Nadine Unger
Sponsor: National Aeronautics and Space Administration $456,705

Summary: Terrestrial ecosystem emissions of biogenic volatile organic compounds (BVOCs) are a critical quantity in air pollution-climate interactions. This project exploits synergies between the NASA SEAC4RS, NSF NOMADSS and NOAA SENEX field campaigns during 2013 to constrain the BVOC emission impacts on atmospheric chemical composition in the U.S. through the growing season into the fall. The specific goals of this proposal are to: (1) improve realism of BVOC emission schemes for next generation global Earth system models (2) assess the impacts of BVOC emissions on oxidant and secondary aerosol formation and composition over the U.S. (3) quantify future global change impacts on BVOC emissions and projections of ozone, organic aerosol and methane for a broad range of possible scenarios (2010-2100). To achieve these goals, we will probe multiple atmospheric measurements from flux towers, aircraft campaigns and satellites in combination with a vegetation model run at the site-level, regional and global scales. The model incorporates two state-of-the-science conceptually different BVOC emission algorithms (photosynthesis-based and MEGAN v3.0) that are embedded within the same host simulation framework. A global carbon-chemistry-climate model based on NASA GISS Model- E2 with interactive terrestrial ecosystems (Yale-E2) will be employed to interpret the aircraft measurements and perform the future projections. The project will provide new quantitative insights into BVOC emissions and BVOC-chemistry-climate feedbacks in the contemporary and future worlds.

New Project Funding: Anobha Gurung (Advisor: Michelle Bell)

EPA Logo
Susceptibility to exposure from traffic related air pollution and human health burden in Kathmandu Valley, Nepal
PI: Anobha Gurung, PhD Student
Sponsor: Environmental Protection Agency STAR Fellowship

Summary: Research is critically needed to quantify exposure to air pollution and human health burden in growing Asian cities. As part of her EPA STAR Fellowship, Anobha will investigate exposure to traffic related air pollution and human health burden with characterization of susceptibility factors (e.g. age) in urban areas of Kathmandu Valley, Nepal, one of the fastest urbanizing nations in South Asia. A review of studies conducted in Nepal of air pollution and human health, indicated a dearth of research with the few existing studies suggesting potentially serious health consequences. Here annual average urban population has grown 3.92% in the past ten years. Her previous research identified high air pollution in this region, a result of old vehicles, fuel adulteration, poor road infrastructure, unplanned urbanization, bowl like topography, and growing population. However, despite the rising urban population and traffic identified as the main source of pollution no study of traffic related air pollution and human health has been conducted in Kathmandu Valley.

New Project Funding: Jennifer Marlon

Collaborative Research: Testing hypotheses about human and climate impacts on fire over the past millennium using paleodata syntheses and global fire modeling
Yale PI: Jennifer Marlon, in collaboration with PI Brian Magi (UNC-Charlotte) and PI Patrick Bartlein (University of Oregon)
Sponsor: National Science Foundation $114,291

Summary: Fire is a fundamental process in the Earth system. In recent centuries, human use and suppression of fire and both natural and anthropogenic climate change have altered the types and spatio-temporal patterns of fires globally. In the future, as global temperatures continue to increase, fire activity is projected to increase in much of the world. While the fire projections are vital for managing physical and human systems, they are highly uncertain. To reduce the uncertainty, a better understanding of how fires interact with humans, climate, and vegetation is required - not only under current conditions, which have been extensively studied - but also in the past, when conditions were very different from today.

The proposed work will address three timely research objectives designed to use observed patterns of fire activity in the past to inform global fire modeling of the past, present and future.  The project’s data and tools include a unique global charcoal database containing detailed records of biomass burning over the past 1000 years, multiple sources of paleoclimate data and simulations from the Palaeoclimate Modelling Intercomparison Project (PMIP3), two different global land-cover reconstructions, and a global fire model. To achieve the objectives, an established paleofire database (the Global Charcoal Database) will be expanded to include over 50% more records, and an existing global fire model based on present-day conditions will be adapted for simulations of the past millennium by testing individual fire model dependencies against observations of climate and fire over the past millennium.

New Project Funding: Eli Fenichel

Coastal SEES Collaborative Research: Adaptations of fish and fishing communities to rapid climate velocities
Yale PI: Eli Fenichel, in collaboration with PI Malin Pinsky (Rutgers) and PI Simon Levin (Princeton)
Sponsor: National Science Foundation $150,514

Summary: Climate change presents a profound challenge to the sustainability of coastal systems, but most research has ignored the important coupling between human responses to climate effects and the cumulative impacts of these responses on ecosystems. Fisheries are a prime example of this feedback: climate drives shifts in species distributions and abundances, and fisheries adapt to these shifts. However, changes in the location and intensity of fishing also have major ecosystem impacts. This project’s goal is to understand how climate and fishing interact to affect the long-term sustainability of marine populations and the ecosystem services they support. The project focuses on fisheries for summer flounder and hake on the northeast U.S. continental shelf, which target some of the most rapidly shifting species in North America. The project addresses three questions: 1) How do the interacting impacts of fishing and climate velocities affect the persistence, abundance, and distribution of marine fishes? 2) How do fishers and fishing communities adapt to species range shifts and related changes in abundance? and 3) Which institutions create incentives that sustain or maximize the value of natural capital and comprehensive social wealth in the face of rapid climate velocities?

New Project Funding: Alex Felson, James Axley, & Graeme Berlyn

The transformation of existing green wall technology to provide urban heat rejection infrastructure
PI: Alex Felson
Co-PIs: James Axley, and Graeme Berlyn
Sponsor: National Science Foundation $299,960

Summary: Green walls provide benefits that have fostered the growth of a new industry as they can passively moderate exterior wall surface temperatures and thereby reduce building heating and cooling loads, attenuate surface temperature variations and solar exposure that degrade exterior wall finishes, and provide ecosystem service benefits including air pollution and particulate removal, mitigation of urban heat island effects, and urban wildlife habitats. To date, these benefits do not offset the costs of green walls, and therefore, the market for green walls remains limited. This research will address problems that must be resolved to transform existing green wall technology into an active technology for process heat rejection (i.e., principally, here, for chilled water generation), and thereby expand the market to a wide range of applications from households to institutions and industry. The objective is to provide a sustainable alternative to wet cooling tower technology that maintains the benefits of existing green walls, employing their methods of construction and operation, while avoiding the shortcomings of wet cooling tower technologies (i.e., single use and contamination of cooling water).

New Project Funding: Ben Cashore

Small Scale Funding Agreement Relating to Regional Delivery of the REDD+ Academy
PI: Ben Cashore
Sponsor: United Nations Environment Programme (UNEP) $199,942

Summary: The overall objective of the project is to ensure the development and delivery of a strong process for capacity building in which the needs of participants are tied to the delivery of on-the-ground REDD+ readiness activities through a long-term and sustainable learning experience.  The partnership is intended to produce pre-course material and complete learning modules as well as quality control for the 'REDD+ Academy'. The materials and framework required for launching a massive open online course (MOOC) on REDD+ and Land-use Planning will also be developed.

Karen Seto Succeeds David Skelly as Associate Dean & Doctoral Studies Director

seto skelly
Karen Seto, a professor of geography and urbanization at the Yale School of Forestry & Environmental Studies (F&ES), has been named the School’s next Associate Dean for Research and Director of Doctoral Studies.
She succeeds David Skelly, an F&ES professor of ecology who was appointed as the new director of the Yale Peabody Museum of Natural History beginning July 1.
For Seto, who has been at Yale for six years, the new position offers a chance to reassess how the School prepares its students for a changing academic world — and to continue the work started by Skelly to integrate the realms of research and doctoral studies at F&ES.

New Project Funding: Kris Covey (Advisor: Mark Bradford)

Dissertation Research: Quantification and Characterization of the Production of Methane in Living Trees
PI: Mark Bradford (Faculty Advisor), Doctoral Candidate: Kris Covey
Sponsor: National Science Foundation (Doctoral Dissertation Improvement Grant) $21,645

Summary: Dissertation research undertaken thus far demonstrates the prevalence of elevated methane concentrations in upland hardwood dominated eastern forests, illuminates distinct species level patterns in production potential, and suggests that the highest methane production rates drive substantial through bark emission. Initial estimates indicate the magnitude of this unrecognized source could be on the same order as the upland forest methane sink. The PIs propose expanding their current work to achieve three primary objectives: 1. Determine the extent to which methane production observed in the trunks of eastern hardwood trees also occurs in conifer-dominated western forests. 2. Assess the contribution of methane production in dead wood and debris to overall forest methane flux. 3. Associate measured methane production with microbial community dynamics in wood. This work is transformative because it asks whether methane production from understudied methane sources changes forests from net methane sinks to sources. We know that heart rot is ubiquitous in forests but its part in global CH4 budgets has not been considered until publication of our preliminary data. Initial estimates from our paper suggest that heart-rot methane emissions are equivalent in global warming potential to about 18% of the carbon dioxide likely sequestered by the stand in which we worked. The studies proposed here will allow for the expansion of our current work by providing the data necessary build our initial CH4 rate estimates beyond the individual forest stand to a robust estimate of continental emissions of methane originating in living trees. Furthermore, these data will help to disentangle the contribution of in situ microbial-born methane from the other confirmed plant-methane pathways.

New Project Funding: Thomas Graedel

USGS logo
Anthropogenic Life Cycles of Scarce Metals
PI: Thomas Graedel
Sponsor: U.S. Geological Survey $48,469

Summary: Material flow analysis approaches have been used widely over the past decade to characterize the life cycles of the major metals. A similar situation has not occurred for the scarce metals, many of which are uniquely useful constituents of new technological development. This is partly due to the fact that information regarding those cycles is less readily available. However, as part of a larger criticality of metals project, we have developed information on the extraction, use, discard, and loss of a number of the scarce metals. We will use this information to construct global and U.S. life cycles for year 2008 for four scarce metals: gallium, indium, germanium, and rhenium; these are the first U.S. cycles ever to be characterized in detail for these metals. The results of this study will help to build further knowledge on the less common (“scarcer”) metals, many of which have been identified by the USGS Minerals Research Program to be of increasing importance to the U.S. national economy. Understanding the whole system of material flows can help to quantify potential primary and secondary source strengths, manage metal use more wisely, and protect the environment.

New Project Funding: Shimon Anisfeld

The Future of Long Island Sound Tidal Marshes: Understanding Marsh Migration into Different Upland Types
PI: Shimon Anisfeld; Co-PI: Andrew Kemp (Tufts University)
Sponsor: Connecticut Sea Grant $129,994

Summary: Shimon Anisfeld and his colleague Andrew Kemp will investigate the ability of salt marshes to migrate upland as sea levels rise. Healthy marshes protect shorelines from storm impacts and serve as nursery habitat for many animals. Their successful migration will depend on many factors such as elevation, hydrology, soils, plants, and animals.
Share this page:

Recent Publications

  • Esty, D. . “Toward a Sustainable Global Economy: An Initiative for G20 Leadership.” Journal of Self-Governance and Management Economics 5.2 (2017): 46-60. Link
  • Freire-González, J., D.F. Vivanco, and I. Puig-Ventosa. “Economic structure and energy savings from energy efficiency in households.” Ecological Economics 131 (2017): 12-20. DOI: 10.1016/j.ecolecon.2016.08.023
  • Ciacci, L., P. Nuss, B.K. Reck, T.T. Werner, and T.E. Graedel. “Metal criticality determination for Australia, the US, and the planet – comparing 2008 and 2012 results.” Resources 5.4 (2016): 29. DOI: 10.3390/resources5040029
  • Schmitz, O.J. and G.C. Trussell. “Multiple stressors, state-dependence and predation risk — foraging trade-offs: toward a modern concept of trait-mediated indirect effects in communities and ecosystems.” Current Opinion in Behavioral Sciences 12 (2016): 6-11. DOI: 10.1016/j.cobeha.2016.08.003
  • Gillingham, K., J. Bushnell, M. Fowlie, M. Greenstone, A. Krupnick, C. Kolstad, A. Morris, R. Schmalensee, and J. Stock. “Reforming the Federal Coal Leasing Program.” Science 354.4316 (2016): 1096-1098. DOI: 10.1126/science.aak9851
  • Báez, S., D.A. Donoso, S.A. Queenborough, L. Jaramillo, R. Valencia, and O. Dangles. . “Ant Mutualism Increases Long-Term Growth and Survival of a Common Amazonian Tree.” The American Naturalist 188.5 (2016): 567-575. DOI: 10.1086/688401
  • Krishnadas, M., A. Kumar, and L.S. Comita. “Environmental gradients structure tropical tree assemblages at the regional scale.” Journal of Vegetation Science 27.6 (2016): 1117-1128. DOI: 10.1111/jvs.12438
  • Massetti, E., R. Mendelsohn, and S. Chonabayashi. “How Well Do Degree Days over the Growing Season Capture the Effect of Climate on Farmland Values?.” Energy Economics 60 (2016): 144-150. DOI: 10.1016/j.eneco.2016.09.004
  • Cuneo, I.F., T.M. Knipfer, C.R. Brodersen, and A.J. McElrone. “Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought.” Plant Physiology 172.3 (2016): 1669-1678. DOI: 10.1104/pp.16.00923
  • Bradford, M.A. “Re-visioning soil food webs.” Soil Biology & Biochemistry 102 (2016): 1-3. DOI: 10.1016/j.soilbio.2016.08.010
  • Schmitz, O.J. The New Ecology: Rethinking a Science for the Anthropocene. Princeton, NJ: Princeton University Press, 2016. Link
  • Donihue, C.M. “Aegean wall lizards switch foraging modes, diet, and morphology in a human-built environment.” Ecology and Evolution 6.20 (2016): 7433-7442. DOI: 10.1002/ece3.2501
  • Creutzig, F., B. Fernandez, H. Haberl, R. Khosla, Y. Mulugetta, and K.C. Seto. “Beyond technology: Demand-side solutions to climate change mitigation.” Annual Review of Environment and Resources 41 (2016): 173-198. DOI: 10.1146/annurev-environ-110615-085428
  • Seto, K.C., S.J. Davis, R.B. Mitchell, E.C. Stokes, G. Unruh, and D. Ürge-Vorsatz. “Carbon lock-in: Types, causes, and policy implications.” Annual Review of Environment and Resources 41 (2016): 425-452. DOI: 10.1146/annurev-environ-110615-085934
  • Stokes, E.C. and K.C. Seto. “Climate change and urban land systems: bridging the gaps between urbanism and land science.” Journal of Land Use Science 11.6 (2016): 698-708. DOI: 10.1080/1747423X.2016.1241316
  • Vivanco, D.F., A. Tukker, and R. Kemp. . “Do Methodological Choices in Environmental Modeling Bias Rebound Effects? A Case Study on Electric Cars.” Environmental Science & Technology 50.20 (2016): 11366-11376. DOI: 10.1021/acs.est.6b01871
  • Wilmers, C.C. and O.J. Schmitz. “Effects of gray wolf-induced trophic cascades on ecosystem carbon cycling.” Ecosphere 7.10 (2016): e01501. DOI: 10.1002/ecs2.1501
  • Global Burden of Disease 2015 Risk Factors Collaborators (including M.L. Bell). “Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.” The Lancet 388.10053 (2016): 1659-1724. DOI: 10.1016/S0140-6736(16)31679-8
  • Global Burden of Disease 2015 Child Mortality Collaborators (including M.L. Bell). “Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015.” The Lancet 388.10053 (2016): 1725-1774. DOI: 10.1016/S0140-6736(16)31575-6
  • Ninazunta, M., S.A. Queenborough, C. Hernandez, and R. Valencia. “Growth strategies of the arborescent palm Iriartea deltoidea in a western Amazonian forest.” Botanical Journal of the Linnean Society 182.2 (2016): 411-424. DOI: 10.1111/boj.12448
  • Roddy, A.B., C.R. Brodersen, and T.E. Dawson. “Hydraulic conductance and the maintenance of water balance in flowers.” Plant, Cell & Environment 39.10 (2016): 2123-2132. DOI: 10.1111/pce.12761
  • Kuebbing, S.E., and M Nuñez. “Invasive non-native plants have a greater effect on neighbouring natives than other non-natives.” Nature Plants 2.10 (2016): 16134. DOI: 10.1038/NPLANTS.2016.134
  • Kanemoto, K., D. Moran, and E.G. Hertwich. “Mapping the carbon footprint of nations.” Environmental Science & Technology 50.19 (2016): 10512-10517. DOI: 10.1021/acs.est.6b03227
  • Global Burden of Disease 2015 Sustainable Development Goals Collaborators (including M.L. Bell). “Measuring the health-related Sustainable Development Goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015.” The Lancet 388.10053 (2016): 1813-1850. DOI: 10.1016/S0140-6736(16)31467-2
  • Ciacci, L., E.M. Harper, N.T. Nassar, B.K. Reck, and T.E. Graedel. . “Metal dissipation and inefficient recycling intensify climate forcing.” Environmental Science & Technology 50.20 (2016): 11394-11402. DOI: 10.1021/acs.est.6b02714
  • Glick, H.B., D. Routh, C. Bettigole, L. Seegmiller, C. Kuhn, and C.D. Oliver. “Modeling the Effects of Horizontal Positional Error on Classification Accuracy Statistics.” Photogrammetric Engineering and Remote Sensing 82.10 (2016): 789-802. DOI: 10.14358/PERS.82.10.789
  • Wood S.A., N. Sokol, C.W. Bell, M.A. Bradford, S. Naeem, M.D. Wallenstein, and C.A. Palm. “Opposing effects of different soil organic matter fractions on crop yields.” Ecological Applications 26.7 (2016): 2072-2085. DOI: 10.1890/16-0024.1
  • Liu, J.C., L.J. Mickley, M.P. Sulprizio, F. Dominici, X. Yue, K. Ebisu, G.B. Anderson, R.F.A. Khan, M.A. Bravo, and M.L. Bell. “Particulate air pollution from wildfires in the Western US under climate change.” Climatic Change 138.3 (2016): 655-666. DOI: 10.1007/s10584-016-1762-6
  • Jenkins, W., M.E. Tucker and J. Grim, eds. Routledge Handbook of Religion and Ecology. Ed. W. Jenkins, M.E. Tucker and J. Grim London: Routledge, 2016. Link
  • Pennington, V.E., D.R. Schlaepfer, J.L. Beck, J.B. Bradford, K.A. Palmquist, and W.K. Lauenroth. “Sagebrush, greater sage-grouse, and the occurrence and importance of forbs.” Western North American Naturalist 76.3 (2016): 298-312. Link
View more publications