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Abstract—We take advantage of a natural experiment in the state of Indi-
ana to estimate the effect of daylight saving time (DST) on residential
electricity consumption. Our main finding is that, contrary to the policy’s
intent, DST increases electricity demand. The findings are consistent with
simulation results that identify a trade-off between reducing demand for
lighting and increasing demand for heating and cooling. We estimate a
cost to Indiana households of $9 million per year in increased electricity
bills. We also estimate social costs of increased pollution emissions
between $1.7 to $5.5 million per year.

I. Introduction

SEVENTY-SIX nations currently practice daylight sav-
ing time (DST), which directly affects more than 1.6

billion people worldwide. The well-known ‘‘spring forward,
fall back’’ describes the annual ritual: turn clocks forward
one hour in the spring and turn them back one hour in the
fall. Less well known is the fact that DST is a policy
designed to conserve energy.1 Benjamin Franklin (1784) is
credited with the basic idea after observing that people slept
during sunlit hours in the morning and burned candles for
illumination in the evening. He argued that if people
adjusted their schedules to earlier in the day during summer
months, when day length is longest, an immense sum of tal-
low and wax could be saved by the ‘‘economy of using sun-
shine rather than candles.’’2 It was William Willet (1907),
however, who first proposed the simple advancement of
clock time during summer months in order to avoid ‘‘The
Waste of Daylight.’’

The idea finally took hold during World War I when Ger-
many implemented a DST policy, with the aim of reducing
demand for electrical lighting to free up more coal for the

war effort. Thirty-one other nations followed with DST
policies, including the United States, but the practice was
generally repealed worldwide soon after the war. Decades
later, and for the same reason, 52 nations implemented var-
ious DST policies during World War II. Year-round DST
was practiced in the United States for three years and then
repealed entirely.

The first DST law in the United States that was not part
of a wartime initiative was the Uniform Time Act of 1966,
which established that DST would begin on the last Sunday
in April and end on the last Sunday in October.3 Then the
oil embargo of the early 1970s prompted temporary
changes, when the Emergency Daylight Saving Time
Energy Conservation Act of 1973 imposed year-round DST
for fifteen months. A more enduring change, again with the
intent of energy conservation, occurred in 1986, when the
start date was moved forward three weeks. The DST regime
in practice today includes a further extension authorized
within the Energy Policy Act of 2005. Having begun in
2007, DST now starts three weeks earlier, on the second
Sunday in March, and lasts one week longer, until the first
Sunday in November. Figure 1 shows the sunrise and sunset
times, the time shifting of DST, the 2007 extensions on both
ends, and the day length throughout the year (the middle
line) for a representative location in southern Indiana, the
regional focus of this paper.

Congressional debate about the most recent extension to
DST focused on the potential energy savings. While politi-
cians argued that each additional day of DST would save the
equivalent of 100,000 barrels of oil per day (Congressional
Record 2005a, 2005b), surprisingly little research has been
conducted to determine whether DST actually saves energy.4

Even among the few studies that have been conducted, the
evidence is mixed. Nevertheless, with worldwide energy
demand expanding rapidly, along with concerns about cli-
mate change, it is increasingly important to know whether
DST, one of the most uniformly applied policies on the pla-
net, has the intended effect of energy conservation.

In this paper, we further the understanding of DST effects
on energy consumption with a focus on residential electri-
city demand. Our research design takes advantage of the
unique history of DST in of Indiana, combined with a data
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1 A common misperception is that DST is an agricultural policy. Farm-
ers have historically been one of the most organized groups against the
practice of DST because it requires them to work in morning darkness for
an extra hour in order to coordinate with the timing of markets. See Pre-
rau (2005) for a detailed discussion of DST’s long and controversial his-
tory.

2 To encourage the behavior, Franklin (1784) satirically proposed firing
cannons to awaken people at dawn and a tax on window shutters that keep
out sunlight. Interestingly, Franklin also recognized that his calculations
of the economic savings during the summer were an underestimate
because of general equilibrium effects. He wrote, ‘‘I have calculated upon
only one half of the year, and much may be saved in the other, though the
days are shorter. Besides, the immense stock of wax and tallow left
unconsumed during the summer, will probably make candles much
cheaper for the ensuing winter, and continue them cheaper as long as the
proposed reformation shall be supported.’’

3 Individual states could opt for an exemption, but only Arizona,
Hawaii, Indiana, and a few U.S. territories have done so in various ways
over the years. The exemption in Indiana, as we will see, provides the
basis for this paper.

4 Other effects of DST have been studied in more detail. These include
studies that investigate the effects on safety (Coate & Markowitz, 2004;
Sullivan & Flannagan, 2002; Coren 1996a, 1996b), health (Kantermann,
Juda, Merrow, Roenneberg, 2007), economic coordination (Hamermesh,
Myers, & Pocock, 2008), and stock market performance (Kamstra, Kra-
mer, & Levi, 2000, 2002; Pinegar, 2002).
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set of monthly billing cycles for the majority of households
in the southern portion of the state for 2004 through 2006.
While some counties in Indiana have historically practiced
DST, the majority have not. This changed with a state law
requiring all counties to begin practicing DST in 2006. The
initial heterogeneity of DST among Indiana counties and
the policy change in 2006 provide a natural experiment to
empirically identify the relationship between DST and resi-
dential electricity demand.

The results provide the first estimates of DST effects on
electricity demand using residential microdata. A unique
feature of the research design is that we are able to estimate
an overall DST effect and different effects throughout the
year over the entire DST period, including the periods
of transition. We also simulate the effect of DST on house-
hold electricity consumption using an engineering model
(eQuest). These results are comparable to the empirical esti-
mates and highlight seasonal differences in the quantity and
timing of electricity demand for lighting, heating, and cool-
ing. A further contribution of the paper is that we estimate
changes in pollution emissions due to DST and quantify the
associated social costs and benefits.

We find that DST results in a 1% increase in residential
electricity demand, and the effect is highly statistically sig-
nificant. We also find that the effect is not constant through-
out the DST period. In particular, DST causes the greatest
increase in consumption later in the year, with October esti-
mates ranging from an increase of 2% to nearly 4%. Consis-
tent with Benjamin Franklin’s original conjecture, our
simulation results show that DST saves on electricity used
for illumination but increases electricity used for heating
and cooling. Both the empirical and simulation results sug-
gest that the latter effect is larger than the former. More-
over, we find that DST costs Indiana households an average
of $3.29 per year in increased electricity bills, which aggre-
gates to approximately $9 million for the entire state.
Finally, the social costs in terms of increased pollution
emissions range between $1.7 and $5.5 million per year.

While these results clearly run counter to the policy
intent of DST regarding electricity consumption, some lim-
itations should be kept in mind. Because of data availabil-
ity, we are not able to estimate the effects of DST on com-
mercial electricity demand, which could be positive or
negative. Furthermore, our study focuses on Indiana
because of the state’s unique natural experiment, but DST
effects are likely to differ in other regions of the United
States. Despite these limitations for generalizing the results,
we argue later in the paper that residential consumption is
likely to be the portion of aggregate electricity demand that
is most responsive to DST. Moreover, because of its climate
and population, Indiana is one of the most representative
states in terms of demand for heating and cooling. Hence,
the results should at the very least raise questions about the
rationale for DST as a conservation policy.

The remainder of the paper proceeds as follows. The next
section reviews existing evidence on the effect of DST on
electricity consumption. Section III describes the research
design and data collection. Section IV contains the empiri-
cal analysis. Section V provides a discussion of the results
with comparisons to engineering simulations and cost esti-
mates. Section VI concludes with a brief summary and
further remarks about the generalizability of our results.

II. Existing Evidence

The most widely cited study of the DST effect on electri-
city demand is the U.S. Department of Transportation
(1975) report that was required by the Emergency Daylight
Saving Time Energy Conservation Act of 1973. The most
compelling part of the study is its use of the equivalent day
normalization technique, which is essentially a difference-
in-differences approach. Using hourly electricity load data
from 22 different utilities for a period of days before and
after transitions in and out of DST, days are partitioned into
DST-influenced periods (morning, evening) and unin-
fluenced periods (midday, night). It is then assumed that

FIGURE 1.—SUNRISE AND SUNSET TIMES, DAYLIGHT SAVING TIME AND 2007 EXTENSIONS, IN SOUTHERN INDIANA
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differences in the difference between influenced and unin-
fluenced periods, before and after the transition, are due to
the DST effect. The results indicate an average load reduc-
tion of approximately 1% during the spring and fall transi-
tion periods, but a subsequent evaluation of the study, con-
ducted by the National Bureau of Standards (Filliben,
1976), concludes that the energy savings are questionable
and statistically insignificant.

The California Energy Commission (2001) conducts a
simulation-based study to estimate the effects of DST on
statewide electricity consumption. A system of equations is
estimated to explain hourly electricity demand as a function
of employment, weather, temperature, and sunlight. The
commission then simulates electricity use under different
DST regimes. The results indicate that DST leaves electri-
city consumption virtually unchanged between May and
September but may reduce consumption between 0.15%
and 0.3% during April and October.5 More recently, the
CEC (2001) modeling approach is used to consider the
actual extensions to DST that occurred in 2007 (CEC,
2007). Based on the spring and fall extensions, the simula-
tion predicts a decrease in electricity consumption of
0.56%, but the 95% confidence interval includes 0 and
ranges from a decrease of 2.2% to an increase of 1.1%.

As required by the Energy Policy Act of 2005, the U.S.
Department of Energy (2008) estimates the effect on elec-
tricity consumption of the 2007 DST extensions. The study
is based on utility data and comparisons of 2006 and 2007
consumption during the period of extended DST. The main
finding is evidence in support of electricity savings of 0.5%
for each day of extended DST. Increases in demand are
found in the mornings, but these are more than offset by
decreases in demand during the evenings. Electricity sav-
ings are slightly greater during the spring transition com-
pared to the fall transition, and southern regions of the
United States experience smaller savings.6

Kellogg and Wolff (2008) take advantage of a quasi-
experiment that occurred in Australia with the extension of
DST in conjunction with the Sidney Olympic Games in
2000. Using a comparison of electricity load data from two
states, where only one experienced the extension of DST,
they find that DST increases demand for electricity in the
morning and decreases demand in the evening. While in
some cases the net effect is an increase in demand, the com-
bined results are not statistically different from 0. Kellogg
and Wolff also apply the CEC simulation technique to
determine whether it reasonably predicts what actually
occurred with the Australian DST extension. They find that

the simulation fails to predict the morning increase in con-
sumption and overestimates the evening decrease. Their
study provides the first empirical results that question
whether DST policies actually produce the intended effect
of reducing electricity demand.

Using an engineering simulation model, Rock (1997)
also finds evidence that DST might increase, rather than
decrease, electricity consumption. He calibrates a model of
energy consumption for a typical residence using utility
records and chosen parameters for construction type, resi-
dential appliances, heating and cooling systems, lighting
requirements, and number of occupants. In order to account
for differences in weather and geographic location, the
model simulates DST scenarios for 224 different locations
within the United Sates. The results indicate that DST
increases electricity consumption by 0.244% when aver-
aged over all locations.

A similar methodology is employed in two recent studies
that take place in Japan, where DST is continually debated
but not currently practiced. Fong et al. (2007) use a simula-
tion model to investigate the effects of DST on household
lighting, and they find a reduction in electricity consumption
that differs by region.7 Shimoda et al. (2007) conduct a simi-
lar exercise, with the added consideration of DST’s effect on
residential cooling. When considering both effects, they find
that implementing DST results in a 0.13% increase in resi-
dential electricity consumption. The underlying mechanism
for the result is that residential cooling is greater in the eve-
ning than in the morning, and implementing DST aligns an
additional hour of higher outdoor air temperature and solar
radiation with the primary cooling times of the evening.

This review of existing studies suggests that the evidence
to date is inconclusive about the overall effect of DST on
electricity consumption. None of the empirical studies finds
an overall effect that is statistically different from 0, and
the simulation-based studies find mixed results. What is
more, no empirical study has ever been conducted that esti-
mates the overall DST effect throughout the entire year.
Hence, given the widespread practice of DST, its conserva-
tion rationale, and the recent changes to policy, there is a
clear need for more empirical evidence about the potential
impacts of DST on electricity consumption.

III. Research Design and Data Collection

Our study takes advantage of the unique history of DST
in Indiana. The practice of DST has been the subject of
long-standing controversy in the state, due in large part to
the importance of agriculture in Indiana, and the state’s split
between the Eastern and Central Time Zones. For more
than thirty years prior to 2006, the resultant policy has been

5 The Indiana Fiscal Policy Institute (2001) attempts to replicate the
CEC approach and estimate the potential effects of DST in Indiana; how-
ever, the results are not conclusive. While the statistical models are
reported as very preliminary and appear to have never been completed,
the results indicate that DST in Indiana could either increase or decrease
electricity consumption.

6 A similar set of results is found in an earlier report that sought to
anticipate the potential energy-saving impacts of extended DST (U.S.
Department of Energy, 2006).

7 Aries and Newsham (2008) review other studies, many of them tech-
nical reports not published in peer-reviewed journals, that focus on light-
ing energy use in the United States and other countries. They find no clear
DST effect other than some evidence for a reduction in evening peak
demand for electricity.
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three different time scenarios within the state: 77 counties
on Eastern Standard Time (EST) that did not practice DST,
10 counties clustered in the northwestern and southwestern
corners of the state on Central Standard Time (CST) that
did practice DST, and 5 counties in the southeastern portion
of the state on EST that did practice DST.8 The different
time zones changed in 2006 when the entire state began
practicing DST as required by a law that passed the state
legislature in 2005. Also beginning in 2006, a handful of
counties switched from EST to CST.

Focusing on the southern portion of Indiana, the shaded
counties in figure 2 are those in our study. It is useful to par-
tition the counties into four sets, as shown in the figure. The
southeast and southwest counties experienced no change;
they practiced DST prior to 2006 and have remained on
EST and CST, respectively. The northeast counties began
practicing DST for the first time in 2006 but remained on
EST. The northwest counties also began practicing DST for
the first time in 2006, but changed time zones from EST to
CST simultaneously at the spring transition into DST. In
effect, the northwest counties did not advance clocks one
hour in April 2006 but did turn them back one hour at the
end of October 2006. 9

The pattern of time and timing in southern Indiana creates
a natural experiment to identify the effect of DST on residen-
tial electricity demand. The empirical strategy relies on
having monthly billing data for households located within

the different sets of counties before and after the policy
change in 2006. Considering only the DST periods of each
year, we can partition electricity demand into pre-2006 and
2006 periods. Among the different counties, we thus have
treatment and control groups when moving from the before
to after period. The northeast counties serve as a treatment
group because they began practicing DST for the first time in
2006. The other sets of counties serve as a control group
because their clock time never changed during the DST per-
iod of the year, before and after the policy change.10 The key
identification assumption is that after controlling for changes
in observables, such as weather and the practice of DST,
changes from year to year in electricity demand would other-
wise be the same for the treatment and control groups of
counties. With this assumption, identification of the DST
effect comes from a difference-in-differences estimate
between the two groups, before and after the policy change.

Table 1 shows selected variables from the 2000 U.S.
Census for the different sets of counties and in total. The
majority of people live in the eastern counties. The northern
counties have a larger fraction of the population classified
as rural and farm, although the overall proportion of people
living on farms is small. All four sets of counties are similar
with respect to median age and average household size.
Electric heat is more common in the eastern counties, and
income is higher in the southern counties, where average
commute times are also somewhat higher.

We obtained data on residential electricity consumption
from Duke Energy, which provides electrical service in
southern Indiana to the majority of households in the coun-
ties shown in figure 2.11 The data set consists of monthly
billing information for all households serviced by Duke
Energy in the study area from January 2004 through
December 2006. All households in the service area faced
the same standard residential rate, and there were no rate
changes between 2004 and 2006.

Several variables are important for our analysis. The
meter position is a unique number for each electricity
meter. We refer to these positions as residences, and for
each one, we have data for its postal code and county. For
each monthly observation at each residence, we also have
codes that identify which ones belong to the same tenant.
This enables us to account for the fact that people move and
to identify the observations that belong to the same tenant
within each residence.12 Each observation includes usage
amount, which is electricity consumption in kilowatt-hours

FIGURE 2.—SETS OF INDIANA COUNTIES IN THE STUDY WITH DIFFERENT TIME ZONES

AND DIFFERENTIAL PRACTICE OF DAYLIGHT SAVING TIME

8 These differences in the practice of DST were possible because of a
1972 amendment to the Uniform Time Act of 1966 (15 USC 260-67).
The amendment was a direct response to Indiana’s ongoing time regime
debate, and it permitted states with multiple time zones to allow exemp-
tions from the practice of DST.

9 Northeast counties included in the study: Bartholomew, Brown, Craw-
ford, Decatur, Franklin, Jackson, Jefferson, Jennings, Lawrence, Monroe,
Orange, Scott, Ripley, and Washington. Southeast counties: Clark, Dear-
born, Floyd, and Harrison. Southwest counties: Gibson, Posey, and War-
rick. Northwest counties: Daviess, Knox, Martin, and Pike. Counties in
southern Indiana not included in the study because data were not available
from Duke Energy are the following: Ohio and Switzerland in the south-
east, Spencer and Vanderburgh in the southwest, and Dubois and Perry in
the northwest.

10 Recall that clock time did not change for all counties in the control
group, but for different reasons. The policy had no effect on the southeast
and southwest counties, but clock time did not change for the northwest
counties because the first practice of DST and the switch in time zones
occurred simultaneously.

11 Cinergy formerly provided electrical service in southern Indiana but
was acquired by Duke Energy in 2005. Alternative electrical service pro-
viders are the investor-owned utility Vectren and rural electric member-
ship cooperatives.

12 The data do not permit us to follow tenants from one residence to
another, but this is not a limitation for our analysis.
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(kWh), and number of days, which is the number of calen-
dar days over which the usage amount accumulated. With
these two variables, we are able to calculate average daily
consumption (ADC). Finally, each monthly observation
includes a transaction date, which is the date that the usage
amount was recorded in the utility company’s centralized
billing system.

The actual read date of each meter occurs roughly every
thirty days and is determined according to assigned billing
cycles. Residences are grouped into billing cycles and
assigned a cohort number for one of 21 monthly read dates
(the weekdays of a given month). Meters are read for billing
cycle 1 on the first weekday of each month, billing cycle 2 on
the second weekday, and so forth throughout the month. This
staggered system allows the utility company to collect bill-
ing information and provide twelve bills to customers on an
annual basis. Residences are assigned to billing cycles based
on their location, as meter readers move through neighbor-
hoods from residence to residence in order to collect billing
data. In a separate file, we obtained data on the assigned bill-
ing cycle for each meter position. We then merged these data
sets so that each monthly observation is associated with its
assigned read date, according to Duke Energy’s billing cycle
schedule.

We also collected and merged data on weather. Data on
average daily temperature were obtained from the National
Climatic Data Center.13 We collected these data for every
day in 2004 through 2006 from sixty weather stations in
southern Indiana and neighboring Kentucky. For each day
and all sixty weather stations, we calculated heating and cool-
ing degree days, which provide standard metrics for explain-
ing and forecasting electricity demand. The reference point
for calculating degree days is 658 Fahrenheit (F). When aver-
age daily temperature falls below 658F, the difference is the
number of heating degrees in a day. When average daily tem-
perature exceeds 658F, the difference is the number of cool-
ing degrees in a day. We then matched each residence to a cli-
mate station using its postal code and a nearest-neighbor GIS
approach, and for each observation, we collected the exact
days corresponding to the dates of the billing cycle. Heating

degrees in each day were summed over the days in the billing
cycle to yield the heating degree days variable for each
monthly observation. A parallel procedure was used to create
the cooling degree days variable. We then used the number of
days for each observation to calculate variables for average
heating degree days (AHDD) and average cooling degree
days (ACDD). This approach gives nearly residence-specific
weather data for each billing cycle.

The original data set contained 7,939,069 observations,
229,817 residences, and 410,289 tenants. Several steps were
taken, in consultation with technical staff at Duke Energy,
to clean and prepare the data. In order to focus on the most
regular bills, we first dropped all observations that had a
number of days fewer than fifteen and greater than 35
(0.47% of the data).14 We also dropped all of the observa-
tions for which the transaction date did not closely align
with the scheduled billing cycle. The vast majority of trans-
action dates fall within zero to three days after the sched-
uled read date, as meter readers typically enter data into the
system the following workday. Those with transaction dates
that were more than one day earlier than the scheduled read
date or more than five days later were deemed irregular and
dropped (an additional 5.94% of the data). Finally, we
dropped all observations that had less than 1 kWh for aver-
age daily consumption (an additional 2.20% of the data).
The final data set has 7,267,392 observations, 223,889 resi-
dences, and 384,083 tenants.

Table 2 reports descriptive statistics disaggregated into
the sets of counties and combined. Reflecting the relative
populations, the majority of data come from the northeast
counties, followed by those in the southeast, with fewer in
the western counties. Average daily consumption, between
35 and 36 kWh/day, is similar for all sets of counties. As
expected, average cooling degree days are higher in the
southern counties, while average heating degree days are
higher in the northern counties.

Figure 3 illustrates average daily consumption and the
weather variables graphically for each month in the data
set. We show the natural log of ADC separately for the con-

TABLE 1.—U.S. CENSUS DATA FOR SETS OF COUNTIES IN SOUTHERN INDIANA

Set of Counties

Census Variable Southeast Southwest Northeast Northwest Total

Number of counties 4 3 14 4 25
Total population 247,729 111,944 506,932 92,282 958,887
Proportion of population rural 0.389 0.456 0.493 0.537 0.466
Proportion of population rural and farm 0.018 0.029 0.032 0.063 0.031
Median age 36.5 37.6 35.9 37.4 36.4
Number of households 96,011 42,490 195,597 35,748 369,846
Average household size 2.5 2.6 2.5 2.5 2.5
Proportion households with electric heat 0.313 0.284 0.334 0.218 0.311
Median household income in 1999 $42,964 $43,505 $38,076 $33,717 $39,553
Average per capita commute time (minutes) 12.00 11.18 10.58 9.56 10.92

All data taken from the 2000 U.S. Census. Cells weighted appropriately by either population or number of households.

13 These data are available online at www.ncdc.noaa.gov/oa/ncdc.html.

14 The cutoff at 15 days is standard in the econometric analysis of resi-
dential electricity demand (Reiss & White 2003), and Duke Energy con-
siders bills with more than 35 days irregular.
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trol and treatment sets of counties, along with AHDD and
ACDD. As expected, the correspondence between ADC
and the weather variables is close. Electricity demand is
greater in months with high AHDD and ACDD. Also worth
noting are the differences between the treatment and control
groups. Inspection of the trends for ADC reveals that the
control group tends to have greater electricity demand dur-
ing the DST periods, while the treatment group tends to
have greater electricity demand during the non-DST peri-
ods. It appears that differences in AHDD and ACDD influ-
ence this pattern, as the control group tends to be hotter dur-
ing the DST periods and the treatment group tends to be
colder during the non-DST periods. These patterns under-
score the importance of accounting for weather when trying
to explain variation in electricity demand.

IV. Empirical Analysis

Indiana’s 2006 change to DST policy provides a natural
experiment for identifying the effect of DST on residential

electricity demand. The approach is based on a comparison
between the treatment and control groups of counties.
Referring back to in figure 1, recall that the northeast coun-
ties began practicing DST in 2006. The other sets of coun-
ties either practiced DST for all the years 2004 through
2006 or had no change in clock time during the DST period
in 2006 due to the offsetting effect of changing time zones.
Our identification strategy thus comes from a difference-in-
differences (DD) comparison between the two groups,
before and after the DST policy change.15

TABLE 2.—DESCRIPTIVE STATISTICS FOR SETS OF COUNTIES IN THE DATA SET

Set of Counties

Variable Southeast Southwest Northeast Northwest Total

Observations 1,295,108 316,746 5,097,035 558,503 7,267,392
Residences 39,643 9,595 157,477 17,174 223,889
Tenants 66,148 14,387 276,339 27,209 384,083
Average daily consumption (kWh/day) 35.10 35.91 35.86 35.00 35.66

(25.26) (26.08) (28.99) (26.95) (28.08)
Average cooling degree days 4.01 3.88 3.14 3.59 3.36

(5.09) (4.92) (4.18) (4.53) (4.43)
Average heating degree days 11.19 11.86 12.91 12.47 12.53

(11.29) (11.82) (12.44) (12.30) (12.23)

Standard deviations reported in parentheses.

FIGURE 3.—AVERAGE DAILY CONSUMPTION, AVERAGE HEATING DEGREE DAYS, AND AVERAGE COOLING DEGREE DAYS, BY MONTH, 2004–2006,
CONTROL AND TREATMENT SETS OF COUNTIES

15 An alternative identification strategy is to compare the DST and non-
DST periods with a DD approach in the years prior to the policy change.
This strategy relies on the assumption that different sets of counties would
have the same differences in consumption at different times of the year, if
not for the differential practice of DST. We find this assumption less plau-
sible because of the potential confounders of differences in the distribu-
tion of air conditioning or electric heat. We estimate models using this
approach and find results with magnitudes nearly twice as large as those
presented here but do not include these data here. The following estimates
should therefore be considered conservative.
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We begin with a simple comparison of means for average
daily consumption. First, consider only the monthly electri-
city bills with start and end dates entirely within the DST
period of each year. The first two columns of table 3 report
lnADC for both the treatment and control groups, before
and after the policy change. We also report the before- and
after- difference and the DD between groups. These com-
parisons indicate that electricity demand increased for both
groups, but demand increased 1.9% more in the treatment
group. Although this result suggests that DST may increase
electricity demand, the simple comparison of means does
not provide a formal test or control for other variables that
may be changing differentially over time between groups,
namely, weather.

As a point of comparison, we conduct the same proce-
dure using electricity bills with start and end dates entirely
outside the DST period of each year. This calculation can
be thought of as a quasi-counterfactual because it provides
an estimate of how the two groups differ in their differences
to 2006 during the non-DST period of the year, when there
was no policy change.16 We again find that electricity
demand increased for both groups, but in this case, demand
increased 0.91% less in the treatment group. The fact that
this result, when there was no policy change, has a lower
magnitude and the opposite sign provides further evidence
that DST may increase electricity demand.

To more rigorously investigate the DST effect on residen-
tial electricity demand, we estimate standard DD, treatment-
effects models. We once again begin using only electricity
bills that fall entirely within the DST period of each year.17

Our regression models, which we estimate with the fixed-
effects estimator, have the following general specification:

ln ADCit ¼ dYear2006t � NEi

þ f ðACDDit;AHDDit;NEiÞ þ ht þ mi þ eit;
ð1Þ

where subscripts i denote tenants, Year2006t is a dummy
variable for whether the observation occurs during 2006,

NEi is a dummy variable for whether the residence is in the
northeast set of counties, yt is a time-specific intercept, mi is
a tenant-specific intercept, and eit is the error term. Equation
(1) does not specify a particular functional form for the
weather variables because we try several different specifica-
tions, some of which allow the effect of weather to differ
between the treatment and control groups. The estimate of
d is of primary interest: it captures the average DD in elec-
tricity demand for 2006 between the treatment and control
groups. Again, the key identification assumption is that,
after controlling for differences in weather and time-invar-
iant unobserved heterogeneity among tenants, electricity
demand would have followed the same trend in the treat-
ment and control groups, but for the effect of the change in
DST.

All standard errors are clustered at the billing cycle
within each county over all months in order to make statisti-
cal inference robust to potential serial and spatial correla-
tion. The importance of considering serial correlation in
DD estimation is well known (see Bertrand, Duflo, & Mul-
lainathan, 2004), and clustering at this level accounts for
potential serial correlation of household electricity demand
for each tenant. Clustering at the billing cycle also has the
advantage of accounting for potential serial correlation due
to the timing of meter reads earlier or later in the month,
which is not captured with month-year dummies used to
control for the time trend in specification (1). The relatively
broad level of clustering should also allay concerns about
potential spatial correlation. Within counties, billing cycles
are closely aligned with neighborhoods because they are
designed as walking routes for meter reading. The cluster-
ing thus accounts for spatial correlation that may arise
because of unobserved neighborhood characteristics, such
as the density of housing, type and date of construction, and
possibly socioeconomic characteristics.

Table 4 reports the fixed-effects estimates of equation
(1). We provide four specifications that account for weather
in different ways. The variables ACDD and AHDD enter
linearly in Models a and b. The only difference is that
Model b includes interactions with the treatment group so
that weather is allowed to affect electricity demand differ-
ently in the treatment and control groups. Models c and d
are more flexible, with dummy variables for ACDD and
AHDD binned at each integer. This includes eighteen
dummies for ACDD and sixteen dummies for AHDD. In

TABLE 3.—DIFFERENCES IN AVERAGE DAILY CONSUMPTION BETWEEN 2004–2005 AND 2006

DST Period Non-DST Period

Treatment:
Northeast

Control: Southeast,
Southwest, Northwest

Treatment:
Northeast

Control: Southeast,
Southwest, Northwest

Years 2004–2005 3.1256 3.2239 3.2940 3.2147
Year 2006 3.1814 3.2607 3.3068 3.2366
Difference 0.0558 0.0368 0.0128 0.0219
Difference-in-difference (DD) 0.0191 �0.0091

Average daily consumption reported as lnADC. In order to account for the unbalanced panel, we first calculate averages within tenants and then average between tenants. Difference is interpreted as the percentage
change from the years 2004–2005 to year 2006. Difference-in-difference is the percentage difference in the treatment group compared to the control group. Differences may not compute exactly due to rounding. For
the non-DST control group, we exclude electricity bills in the northwest counties during November and December 2006, when and where there was a policy change due to the shifting of time zones.

16 For this calculation, we exclude electricity bills in the northwest
counties during November and December 2006, when and where there is
the confounding effect of a time-zone change.

17 To be even more specific, for these DST and non-DST models, we
drop the monthly electricity bills that straddle the date of transition in or
out of DST. Later in this section, we use these dropped observations to
estimate the DST effect at the spring and fall transitions.
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parallel, the only difference in Model d is that each weather
dummy variable is also interacted with the treatment group
to allow differences in the effect of weather between
groups. The estimate of d for all four models is positive,
highly statistically significant, and of similar magnitude.
The estimates fall between 0.008 and 0.0103. The interpre-
tation is that DST causes an increase in electricity demand
that ranges from 0.8% to 1.03% over the entire DST period.

Table 5 reports the fixed-effects estimates for the quasi-
counterfactual experiment. Using only data for the non-
DST period of each year, we estimate a slightly modified
version of equation (1). To take advantage of all the data,
we include an additional dummy variable, NWchg2006, to
account for the time zone change that occurred in the north-
west counties at the end of 2006. Another difference is that

Models c and d do not include dummy variables for ACDD,
as there are exceedingly few cooling degree days in Indiana
during the non-DST period of the year. These models do,
however, include 32 dummy variables for AHDD, which
are also interacted with the treatment group in Model d. All
estimates of the quasi-counterfactual DST effect are nega-
tive and have relatively small magnitudes, ranging from
0.3% to 0.6%. While three of the four estimates are not sta-
tistically distinguishable from 0, despite having close to 2.4
million observations, the coefficient in Model c is margin-
ally statistically significant. Generally we interpret these
results in support of our key identification assumption that
the trend in electricity demand is similar between the treat-
ment and control groups of counties, other than for the
change in DST policy and differences due to weather.

TABLE 5.—QUASI-COUNTERFACTUAL NON-DST PERIOD FIXED-EFFECTS MODELS FOR CHANGED AVERAGE DAILY CONSUMPTION, 2006

(a) (b) (c) (d)

Year 2006 � Treatment group �0.0030 �0.0004 �0.0064* �0.0029
(0.0029) (0.0028) (0.0031) (0.0031)

Average cooling degree days (ACDD) 0.0065 �0.0483** 0.0244 �0.0060
(0.0292) (0.0178) (0.0248) (0.0211)

Average heating degree days (AHDD) 0.0150** 0.0144** – –
(0.0004) (0.0005)

ACDD � Treatment group – 0.1008* – 0.0453
(0.0494) (0.0424)

AHDD � Treatment group – 0.0008 – –
(0.0005)

ACDD dummies – – – –
AHDD dummies – – Yes Yes
ACDD dummies � Treatment group – – – –
AHDD dummies � Treatment group – – – Yes
NWchg2006 0.0062 0.0039 0.0041 0.0015

(0.0077) (0.0076) (0.0079) (0.0076)
Month-year dummies Yes Yes Yes Yes
Observations 2,374,790 2,374,790 2,374,790 2,374,790
Tenants 340,328 340,328 340,328 340,328
R2 (within) 0.080 0.080 0.080 0.081

The left-hand side variable is lnADC. Standard errors, reported in parentheses, are clustered at the County � Billing Cycle level, of which there are 387 clusters. Models c and d include 31 categories for AHDD,
and each of these dummy variables is interacted with the treatment group in Model d. ** and * indicate statistical significance at the 99% and 95% levels, respectively.

TABLE 4.—NATURAL EXPERIMENT DST PERIOD FIXED-EFFECTS MODELS FOR CHANGED AVERAGE DAILY CONSUMPTION IN 2006

(a) (b) (c) (d)

Year 2006 � Treatment group 0.0096** 0.0080** 0.0103** 0.0089**
(0.0030) (0.0029) (0.0027) (0.0029)

Average cooling degree days (ACDD) 0.0487** 0.0481** – –
(0.0012) (0.0013)

Average heating degree days (AHDD) 0.0035** 0.0005 – –
(0.0011) (0.0013)

ACDD � Treatment group – �0.0004 – –
(0.0009)

AHDD � Treatment group – 0.0029* – –
(0.0013)

ACDD dummies – – Yes Yes
AHDD dummies – – Yes Yes
ACDD dummies � Treatment group – – – Yes
AHDD dummies � Treatment group – – – Yes
Month-year dummies Yes Yes Yes Yes
Observations 3,685,287 3,685,287 3,685,287 3,685,287
Tenants 343,530 343,530 343,530 343,530
R2 (within) 0.310 0.310 0.310 0.310

The left-hand-side variable is lnADC. Standard errors, reported in parentheses, are clustered at the Billing Cycle � County level, of which there are 388 clusters. Models c and d include eighteen categories for
ACDD and sixteen categories for AHDD. All weather dummies are also interacted with the treatment group in Model d. ** and * indicate statistical significance at the 99% and 95% levels, respectively.

1179DOES DAYLIGHT SAVING TIME SAVE ENERGY?



We now disaggregate our estimate of the overall DST
effect into monthly estimates in order to investigate whether
the effect of DST differs throughout the year. In particular,
we estimate equation (1) separately for each month of the
year based on the meter read date. Following the same prac-
tice, we estimate equations for both the DST and non-DST
periods, and we continue to exclude observations that strad-
dle the DST transitions, meaning that we do not have
monthly models for April or November. For simplicity, we
report disaggregated estimates consistent with inclusion of
the weather variables in column a in tables 4 and 5.18

Rather than report each of the ten equations, we focus on
estimates of d, that is, the DST and quasi-counterfactual
effects. We illustrate these results graphically in figure 4,
along with the 95% confidence intervals (standard errors
are again clustered at the County � Billing Cycle level over
all months). We find that the effect of DST is not statisti-
cally different from 0 in May and June. It is, however, posi-
tive and statistically significant for July through October,
with magnitudes ranging from 1% to 2%. As expected, dur-
ing the non-DST months, we find no statistically significant
differences between the treatment and control groups.

The fact that monthly billing data are structured around
billing cycles, with consistent read dates within each month,
allows us to decompose the estimates even further. We sepa-
rate the observations into billing cohorts where the month is
divided into three segments: those with read dates in the first
third of the month, the second third of the month, and the
last third of the month.19 We then estimate parallel models
for each cohort in each month. In effect, this disaggregates

the monthly estimates into third-of-month estimates. These
results are shown in figure 5. We again do not find consistent
evidence for DST effects in May and June, yet through the
DST period, there is a clear upward trend. In the later half of
the DST period, nearly every estimate indicates that DST
causes an increase in electricity consumption, with the effect
appearing to be strongest during the October read dates,
when estimates range between 2% and 4%. In the non-DST
periods, all coefficients except one are not statically differ-
ent from 0, as one would expect if in the DST periods we are
identifying the effect of changing the clock.

The final set of models that we estimate takes advantage
of the monthly observations that straddle the transition
dates in and out of the DST period. We have thus far
dropped these observations from the analysis, but we now
use them to focus on estimates of the DST effect at the time
of transition. In parallel with equation (1), we estimate
models for the spring and fall transitions that have the fol-
lowing form:

ln ADCit ¼ dDSTfrac� Year2006t � NEi

þ b1ACDDit þ b2AHDDit

þ c1Year2005t þ c2Year2006tþmi þ eit;

ð2Þ

where the main difference is the interaction of DSTfrac with
the treatment effect variable.20 The new term is the fraction
of the number of days in the billing cycle that are in the
DST period. Once again, the coefficient d is of primary
interest, and its interpretation remains the same: the percen-
tage change in average daily consumption due to the prac-
tice of DST. But here the effect is identified off the mar-
ginal changes in the number of days in DST.

Table 6 reports the fixed-effects estimates of equation (2)
for both the spring and fall models. For the spring transi-
tion, we find a positive and statistically significant effect,

FIGURE 4.—MONTHLY ESTIMATES AND 95% CONFIDENCE INTERVALS FOR THE DST EFFECT AND THE QUASI-COUNTERFACTUAL

18 Alternative specifications of the weather variables have little affect
on the coefficient estimates of interest.

19 Because there are 21 billing cycles in each month, this procedure
means that there are 7 billing cycles in each cohort. In principle, we could
estimate the DST effect for each billing cycle separately rather than com-
bining them into cohorts. But there is a trade-off between having more
precisely timed estimates and having fewer data on which to estimate the
effect. We thus follow the segmentation in Reiss and White (2003),
whereby 7 billing cycles are combined into one cohort.

20 We again report only specifications in which the weather variables
enter linearly and without interactions with the treatment group.
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with a magnitude of approximately 1.2%. The coefficient
estimate for the fall transition model is also positive but has
a very small magnitude and is not statistically different
from 0. While both of these transition results are of interest,
they should be interpreted with caution because they are
based on an attempt to extract a daily effect out of inher-
ently monthly data. This, of course, makes it difficult to pre-
cisely estimate the effect. The same caution does not apply
to the estimates reported previously, where the models are
based on data for which all days in the monthly billing
cycle are subject to the same treatment effect.

V. Discussion

In this section, we consider two questions. First, what are
the underlying mechanisms that give rise to the estimates of
the DST effect on residential electricity consumption? To
answer this question, we provide evidence from an engi-
neering simulation model. Second, given that DST causes
an overall increase in residential electricity consumption,

what are the costs? We answer this question in terms of
increased residential electricity costs and the social costs of
increased pollution emissions.

A. Engineering Simulations

We ran simulations on eQuest, an interface program
based on a versatile U.S. Department of Energy simulation
model of a building’s energy demand, including electri-
city.21 The program has standardized design parameters for
various building types, but users can alter all parameters.
We ran many simulations with different sets of parameters
based on advice we received from program experts.
Although the numerical estimates differ among simulations,
the general pattern of results remains the same. We report
the results for a single-family residence in southern Indiana
with parameter settings thought to be most representative.22

Using 2006 as the calendar year, we ran simulations for the
DST periods of the year, with and without the option to
implement DST.

The first column of table 7 reports the simulated percen-
tage change in electricity consumption by month. Electri-

FIGURE 5.—THIRD-OF-MONTH ESTIMATES AND 95% CONFIDENCE INTERVALS FOR THE DST EFFECT AND THE QUASI-COUNTERFACTUAL

TABLE 6.—FIXED-EFFECTS MODELS FOR THE SPRING AND FALL TRANSITIONS

IN AND OUT OF DST

Transition Models

Spring Fall

Fraction DST days � Year 2006
� Treatment group

0.0123** 0.0048
(0.0060) (0.0069)

Average cooling degree
days (ACDD)

0.0347** 0.0501**
(0.0040) (0.0066)

Average heating degree
days (AHDD)

0.0126** 0.0131**
(0.0007) (0.0009)

Year 2005 0.0130** 0.0043
(0.0020)** (0.0029)

Year 2006 0.0148** 0.0257**
(0.0029) (0.0065)

Number of observations 580,888 603,253
Number of residents 282,703 283,964
R2 (within) 0.008 0.036

The left-hand-side variable is lnADC. Standard errors, reported in parentheses, are clustered at the
County � Billing Cycle level, of which there are 374 and 277 clusters for the spring and fall models,
respectively. ** and * indicate statistical significance at the 99% and 95% levels, respectively.

21 The program description and download can be found at www.doe2
.com. eQuest has the complete DOE-2 (version 2.2) building energy use
simulation program embedded. Rock (1997) uses an older version of
DOE-2.

22 Details about the program settings for the results presented here are
the following. We use the multifamily, low-rise schematic to model a sin-
gle-family dwelling in Evansville. The dwelling is a single-story, wood-
frame construction, with front and rear entry points and appropriate
square footage for a family of four (approximately 1800 square feet). The
rectangular footprint (35 � 51 feet) is oriented north-south in the length-
wise direction, with doors on both north and south sides. We modify the
roof to pitched with recommended default settings. Day lighting controls
are set at 100% to simulate electricity use change due to daylight relative
to clock time. Occupancy schedules are default, based on daytime work
and leisure outside the home. Heating in the residence is forced-air resis-
tance electric, and cooling is typical Freon-coil air-conditioning. Seasonal
thermostat set points to initiate the HVAC system for occupied are 768F
for cooling and 688F for heating, for unoccupied 808F and 658F, respec-
tively. Fans are cycled intermittently at night but are shut off from mid-
night to 4:00. Further details about the simulations and results are avail-
able on request.
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city consumption increases in six out of the seven months.
The only month associated with a savings is July, and the
magnitude is 0.5%. The increased consumption that occurs
in the spring months of April and May, at approximately
0.7% and 1.7%, respectively, tapers off in midsummer. By
September and October, the simulated increase in consump-
tion is well over 2%. Note that the pattern of these results is
similar in many respects to our estimates in the previous
section. We found some evidence, based on the model pre-
sented in table 6, of an increase in electricity consumption
at the time of transition in April. Referring back to figure 5,
we also found that the largest increases in consumption
occur in late summer and early fall. In particular, the Octo-
ber read dates, which reflect half of September’s consump-
tion because of nearly a thirty-day lag on average, have
magnitudes of increased electricity consumption that are
similar to the predictions of the simulation model.

Beyond corroboration of our findings, the value of the
simulation exercise is that we can decompose electricity
consumption into its component parts. The last three col-
umns in table 7 report the simulated change in average daily
consumption by month for lighting, cooling, and heating
separately. In all months other than October, DST saves on
electricity used for lighting; therefore, it appears that the
‘‘Benjamin Franklin effect’’ is occurring. But when it comes
to cooling and heating, the clear pattern is that DST causes
an increase in electricity consumption. The changes in aver-
age daily consumption are far greater for cooling, which fol-
lows, because air-conditioning tends to draw more electri-
city and DST occurs during the hotter months of the year.23

These results indicate that the findings of Shimoda et al.
(2007) for Japan apply to Indiana as well. Moving an hour of
sunlight from the early morning to the evening (relative to
clock time) increases electricity consumption for cooling
because demand for cooling is greater in the evening and the

buildup of solar radiation throughout the day means that the
evening is hotter. Though not shown here, this is precisely
the pattern that we find in the simulated daily electricity pro-
files for each month. In some months, as can be seen in table
7, the cooling effect outweighs the Benjamin Franklin effect.

There is also evidence for a heating effect that causes an
increase in electricity consumption. When temperatures are
such that heating is necessary, having an additional hour of
darkness in the morning, the coldest time of day, increases
electricity consumption. Kellogg and Wolff (2006) find evi-
dence for the heating effect in their study of DST exten-
sions in Australia. Although the magnitude of the heating
effect does not appear to be as large in our Indiana simula-
tion results, it is likely to be more substantial when consid-
ering extensions to DST, which push clock-shifting further
into the colder and shorter days of the year.

B. Costs of DST in Indiana

To begin calculating the costs of DST in Indiana, we
need to establish the baseline of what electricity consump-
tion would be without the practice of DST. We take advan-
tage of all the data during the DST period to establish the
baseline. For all observations that were subject to DST, we
subtract the estimate of 0.96% that comes from Model a in
table 4. Average daily consumption is then calculated from
these adjusted observations and all others that were not sub-
ject to DST, yielding an overall estimate of 30.12 kWh per
day. It follows that the effect of DST, under the pre-2007
dates of practice, is an increase in consumption for the aver-
age residence of 61.01 kWh per year (0.0096 � 30.12 kWh/
day � 211 days/year). Extrapolating this estimate to all
2,724,429 households in Indiana implies that DST increases
statewide residential electricity consumption by 166,217
megawatt hours per year (MWh/year).

With this estimate, it is straightforward to derive the
increased residential electricity costs per year. The average
price paid for residential electricity service from Duke
Energy in southern Indiana is $0.054 per kWh. Multiplying
this price by the change in a household’s consumption
implies a residential cost of $3.29 per year. Extrapolating
once again to the entire state yields a cost of $8,963,371 per
year in residential electricity bills due to the practice of
DST.24

The statewide increase in electricity consumption of
166,217 MWh per year also provides the basis for calculat-
ing the social costs of pollution emissions.25 We follow the

TABLE 7.—SIMULATION RESULTS FOR CHANGES IN MONTHLY ELECTRICITY DEMAND

IN KWH PER DAY DUE TO DST

Difference in Average Daily
Consumption (DST – no DST)

DST Effect Lighting Cooling Heating

April 0.73% �4.1 6.8 2.2
May 1.69% �6.0 10.5 4.4
June 0.03% �7.5 6.8 0.4
July �0.05% �7.5 6.7 0.0
August 0.60% �5.7 9.7 0.0
September 2.31% �1.9 11.7 2.6
October 2.39% 2.4 10.4 1.8
Overall 0.98% �4.5 9.1 1.7

Simulation results based on 2006 simulations in southern Indiana. Quantities reported in the last three
columns are changes in average daily consumption (kWh/day) due to DST for the period indicated. DST
effect is the percentage change and does not correspond exactly to the percentage change in lighting,
cooling, and heating, as the overall effect also captures other relatively small changes in electricity
consumption.

23 The relatively large DST effects on air-conditioning in September
and October may be explained by the combination of shorter days and a
considerable number of cooling degree days, in which case clock shifting
is likely to increase demand for cooling when it is already high in the
early evening.

24 A more precise estimate would account for price differences in differ-
ent areas of the state. But the estimate presented here should be treated as
an underestimate. According to the Energy Information Administration
(2006), the average retail price of electricity throughout Indiana in 2006
was $0.0646/kWh. At this price, the increased cost to residential electricity
bills is $10,737,645 per year.

25 The focus on changes in consumption rather than generation means
that we do not take account of transmission and distribution loses, which
can be substantial This is one respect in which the social costs of pollution
emissions reported here should be treated as conservative.
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general approach used in Kotchen et al. (2006). The first
step is to determine the fuel mix for electricity generation.
According to the Energy Information Administration
(2006), the fuel mix for generation in Indiana is 94.8% coal,
2% natural gas, 0.1% petroleum, and 4.9% from other
sources (gases, hydroelectric, and other renewables). We
assume the change in generation due to DST comes entirely
from coal because it accounts for such a vast majority of
the state’s electricity generation. Emission rates, in tons of
emissions per MWh of electricity generation from coal, are
taken from Ecobilan’s Tool for Environmental Analysis
and Management (TEAM) model, a life-cycle assessment
engineering model (Ecobilan, 1996). The first column in
table 8 reports the marginal emissions for carbon dioxide,
lead, mercury, methane, nitrogen oxides, nitrous oxide, par-
ticulates, and sulfur dioxide. The second column reports the
change in emissions for each pollutant, which is simply the
product of marginal emissions and the change in overall
electricity generation.

The next step is to quantify the marginal damages of each
pollutant. For this we use a benefits transfer methodology
and report low- and high-marginal damage scenarios where
possible. The two exceptions are mercury and sulfur diox-
ide. We have only one estimate for mercury, and the values
for sulfur dioxide are the tradable permit price in 2007
rather than the marginal damages. The reason for using the
sulfur permit price is that total emissions are capped, so
the marginal costs are reflected in the permit price, as the
increase in emissions due to DST must be abated some-
where because of the binding cap. Table 8 reports the range
of values in 2007 dollars for all pollutants, and we refer
readers to Kotchen et al. (2006) for details on the specific
references for each estimate.

The final step is to multiply the marginal damages by the
change in emissions for each pollutant. The last two col-
umns of table 8 report these total damage costs for each pol-
lutant for the low and high scenarios. After summing the
results across all pollutants we find that the low and high
estimates for the social costs of emissions are approxi-
mately $1.7 million and $5.5 million per year, respectively.
In the low scenario, increases in carbon dioxide, particu-

lates, and sulfur dioxide account for the vast majority of the
costs. In the high scenario, increases in carbon dioxide
account for a much greater share of the costs, with the dif-
ference reflecting uncertainty about the economic impacts
of climate change. In both scenarios, the costs due to emis-
sions of lead, mercury, and methane are negligible.

VI. Conclusion

The history of DST has been long and controversial.
Throughout its implementation during World Wars I and II,
the oil embargo of the 1970s, more consistent practice
today, and recent extensions, the primary rationale for DST
has always been energy conservation. Nevertheless, there is
surprisingly little evidence that DST actually saves energy.
This paper takes advantage of a unique natural experiment
in Indiana to provide the first empirical estimates of DST’s
overall effect on residential electricity consumption.

Our main finding is that, contrary to the policy’s intent,
DST results in an overall increase in residential electricity
demand. Estimates of the overall increase in consumption
are approximately 1% and highly statistically significant.
We also find that the effect is not constant throughout the
DST period: there is evidence for an increase in electricity
demand at the spring transition into DST, but the real
increases come in the fall, when DST appears to increase
consumption between 2% and 4%. These findings are gen-
erally consistent with our simulation results and those of
others that point to a trade-off between reducing demand
for lighting and increasing demand for heating and cooling
(Shimoda et al., 2007). Similar results have also been found
with empirical evidence based on extended DST in Austra-
lia (Kellogg & Wolff, 2008). According to the dates of DST
practice prior to 2007, we estimate a cost to Indiana house-
holds of $9 million per year in increased electricity bills.
Estimates of the social costs due to increased pollution
emissions range from $1.7 to $5.5 million per year.

Although this paper focuses exclusively on residential
electricity consumption, we argue that it is likely to be the
portion of aggregate electricity demand that is most respon-
sive to DST. Changes in the timing of sunrise and sunset

TABLE 8.—SOCIAL COSTS TO INDIANA OF POLLUTION EMISSIONS FROM DST

Marginal Damages Total Damages

Emissions (tons/MWh) D Emissions (tons) Low High Low High

Carbon dioxide 1.134E-00 188,490.08 $2.82 $20.55 $531,485 $3,872,566
Lead 6.752E-07 0.11 572.52 2,457.32 64 276
Mercury 2.490E-08 0.00 58.90 58.90 0 0
Methane 1.336E-05 2.22 79.96 343.16 178 762
Nitrogen oxides 5.275E-03 876.79 77.20 179.41 67,686 157,304
Nitrous oxide 4.868E-05 8.09 853.54 7,690.35 6,906 62,226
Particulates 8.540E-04 141.95 954.91 3,282.86 135,548 465,999
Sulfur dioxide 1.060E-02 1,761.90 518.98 518.98 914,391 914,391
Total $1,656,259 $5,473,524

Emissions (tons/MWh) taken from Ecobilan’s TEAM model. D emissions are the product of emissions and the DST change in electricity consumption of 166,217 MWh/year. All dollars values are reported in
2007 dollars.
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occur when people are more likely to be at home, where
and when behavioral adjustments might occur. Commercial
and industrial electricity demand, in contrast, is likely to be
greatest at inframarginal times of the day and generally less
variable to changes in the timing of daylight. But future
research that accounts for commercial and industrial electri-
city demand will be important to understand the overall
effect of DST on electricity consumption. In terms of energy
consumption more generally, more research is also needed
to consider the DST effects on demand for natural gas, oil,
and gasoline.

It is also worth considering how the Indiana results might
generalize to other locations in the United States. Answers
to this question are, of course, limited by the fact that Indi-
ana is the only place where such a natural experiment has
occurred. There are nevertheless several reasons that we
might infer that the qualitative results will hold across a
much broader area. First, Indiana ranks twenty-fourth and
twentieth, respectively, in terms of population-weighted
CDD and HDD among the 48 coterminous states.26 Hence,
the state is among the most representative in terms of the
standard measure for predicting energy demand. Second,
existing simulations suggest that DST increases electricity
consumption on average over 224 locations throughout the
United States (Rock, 1997), and our results provide empiri-
cal evidence that corroborates the results of engineering
simulations, many of which highlight the potential for DST
to increase energy demand. Third, even when prior research
finds little or no electricity savings at the transitions of DST
in the United States, the effect is smaller in more southern
regions (U. S. Department of Energy 2008), meaning that
Indiana might provide an overestimate. Finally, the fact that
we identify the underlying trade-off between artificial illu-
mination and air-conditioning suggests that the DST effect
that we estimate may be even stronger in the more popu-
lated southern regions of the United States. Farther south,
the days are shorter during the summer, meaning that
decreases in electrical use from lighting are likely to be
smaller, and air-conditioning is more common and inten-
sively used, so that increases in electricity for cooling are
likely to be larger.

In conclusion, we find that the long-standing rationale for
DST is questionable. If anything, the policy seems to have
the opposite of its intended effect. We should keep in mind,
however, that this surprising result may not have always
been the case. Air-conditioning is an important factor, and
only recently has it become so prevalent; between 1978 and
2005 electricity used for air-conditioning in U.S households
increased almost 250% (Energy Information Administra-
tion, 2008). While this particular trend is not likely to
reverse anytime soon, there are other arguments made in
favor of DST. These range from increased opportunities for

leisure, enhanced public health and safety, and economic
growth. In the end, a full evaluation of DST should account
for these multiple dimensions, but the evidence here sug-
gests that continued reliance on Benjamin Franklin’s old
argument alone has become misleading.
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