Lights Out

Impact of the August 2003 Power Outage on Mortality in New York, NY

G. Brooke Anderson and Michelle L. Bell

Background: Little is known about how power outages affect health. We investigated mortality effects of the largest US blackout to date, 14–15 August 2003 in New York, NY.

Methods: We estimated mortality risk in New York, NY, using a generalized linear model with data from 1987–2005. We incorporated possible confounders, including weather and long-term and seasonal mortality trends.

Results: During the blackout, mortality increased for accidental deaths (122% [95% confidence interval = 28%–287%]) and nonaccidental (ie, disease-related) deaths (25% [12%–41%]), resulting in approximately 90 excess deaths. Increased mortality was not from deaths being advanced by a few days; rather, mortality risk remained slightly elevated through August 2003.

Conclusions: To our knowledge, this is the first analysis of power outages and nonaccidental mortality. Understanding the impact of power outages on human health is relevant, given that increased energy demand and climate change are likely to put added strain on power grids.

Methods

Data

Mortality data were obtained from the National Center for Health Statistics through the National Morbidity, Mortality, and Air Pollution Study for the New York, NY, community for 1987–2005. Data include daily mortality counts by age (<65, 65–74, ≥75 years) and cause of death: accidental, cardiovascular, respiratory, and noncardiorespiratory (eTable 1).

Temperature and dew-point temperature data are from the National Climatic Data Center. We used selected monitors operating over the entire study period (eTable 2) and averaged daily data across all reporting monitors to estimate community-wide weather. We adjusted dew-point temperature by temperature, as these variables were highly correlated ($R^2 = 0.94$).

Because pollution can affect mortality, data for ozone (O_3), nitrogen dioxide (NO_2), sulfur dioxide (SO_2), particulate matter with aerodynamic diameter ≤10 μm (PM_{10}), and CO were obtained for the months of August in 2001–2005.
from the US Environmental Protection Agency’s Air Quality System. We included only those monitors reporting during 14–16 August 2003, excluding source-oriented monitors (eFigure 1 and eTable 3, http://links.lww.com/EDE/A556).

Methods

We modeled daily mortality rates using a Poisson distribution with overdispersion, based on methods used to study health effects of air pollution and heat waves. We modeled blackout days using an indicator variable, and controlled for potential time-varying confounders, including day of week, temperature, dew-point temperature, and long-term and seasonal mortality trends (details in the eAppendix, http://links.lww.com/EDE/A556). We estimated the relative risk of mortality associated with the power outage, comparing mortality on blackout days with other days. We tested sensitivity of results using a model with temperature at lags ranging from same day to 4 days previous. In this model, we included temperature lags using a distributed lag model with strata: same day and average of lags 1–4.

To estimate number of deaths related to the blackout, we calculated baseline mortality on blackout days (the expected mortality had the blackout not occurred) and then estimated excess deaths associated with the blackout (relative risk associated with the blackout multiplied by expected mortality). Estimates of uncertainty for excess mortality incorporated uncertainty in the blackout’s association with mortality and in baseline mortality. We estimated effects by age group and cause of death through stratified analysis.

Separately, we considered changes in mortality rates through 31 August 2003 to investigate evidence of short-term mortality displacement. Following methods used to study mortality displacement after heat waves, we fit a spline to a 29-day period centered on 15 August 2003. We placed knots more closely near the blackout because effects likely change more quickly at times closer to the event.

Because heat waves can affect mortality beyond single days of heat, we investigated whether the blackout coincided with a heat wave, defined as ≥2 consecutive days with temperatures ≥98th percentile of year-round temperatures in New York, NY.

Previous work using airborne measurements found decreased pollution in the Northeast during the blackout, possibly from power plant shutdowns. We compared ground-level measurements of O₃, NO₂, SO₂, PM₁₀, and CO during the blackout with distributions of typical levels for the area and season (August 2001–2002 and 2004–2005).

RESULTS

During the blackout, total mortality rose 28%, resulting in approximately 90 excess deaths (Fig. 1, Table). Effect estimates were almost identical using a more complex model that included temperature effects at longer lags (eTable 4, http://links.lww.com/EDE/A556). Risk of accidental deaths increased most; however, excess deaths were primarily from nonaccidental causes. Although all age groups were affected, those 65–74 years were particularly susceptible (Table). We found no evidence of short-term mortality displacement; rather, mortality remained slightly elevated through August 2003.

Temperatures were hot but not extreme for a typical August day in New York (eFigure 2, http://links.lww.com/EDE/A556).
Neither the 14th nor 15th of August was a heat wave day, making adjustment for added heat wave effects unnecessary.

Pollution monitors were interrupted during the blackout; therefore, we could not analyze pollution for the afternoon of 14 August through the morning of 15 August 2003. However, there are data for the morning of 14 August and immediately following power restoration (15 August). We compared pollutant concentrations for all available data on 14–16 August 2003 with distributions of typical levels (August 2001–2002, 2004–2005) (Fig. 2).

Pollution remained at normal August levels for O₃ (Fig. 2A) and PM₁₀ (Fig. 2E). SO₂ concentrations were high (top 75th percentile of usual values) on the morning of 16 August 2003 (Fig. 2B). NO₂ was higher than usual in the evening following power restoration (15 August 2003) (Fig. 2C). CO was close to normal at 1 of the 2 monitors but exceptionally high during the afternoon of 15 August 2003 at a monitor in Manhattan (Fig. 2D).

DISCUSSION

Our results indicate that power outages can immediately and severely harm human health. We found a much higher mortality than reported by the New York City Department of Health and Mental Hygiene, which counted 6 deaths directly attributable to the blackout (the majority from CO poisoning).⁶⁶ Although an earlier study graphically depicted mortality rates during the blackout,⁶ there has been no analysis of the effects of a blackout on disease-related mortality risk or estimates of excess deaths associated with the August 2003 New York blackout. We found that most excess deaths during the blackout were from disease-related causes.

The conditions reported during the blackout help explain our mortality estimates. Some people were trapped in subways over an hour,¹¹ and firefighters performed an estimated 800 elevator rescues.¹¹ Residents of high-rise apartments were isolated and lacked potable water.²³ Those who left higher floors had to descend many flights of stairs—one documented mortality was a heart attack after leaving a high-level office.²⁸

The blackout also complicated the management of illness, which may help explain the range of causes of death. Most food sources and pharmacies were closed—a serious problem for patients with diabetes and anyone low on prescription medicines.²⁸,²⁹ Some power-operated home medical equipment (eg, ventilators, oxygen conservers) could not be used.³⁰ Ambulances responded more slowly than usual,⁷ and because cellular phone service failed during part of the blackout,³¹ it was difficult to contact emergency services. Four of the 75 hospitals in New York, NY, lost power for part of the blackout,²⁷ and hospital emergency rooms with power were overcrowded with people seeking electricity for medical equipment.²⁷

Both heat and air pollution can affect mortality.¹⁶,²³ Our estimate of excess mortality during the blackout cannot be explained solely by heat. We controlled for temperature in the model, and the blackout did not coincide with a heat wave. However, increased exposure to heat during the power outage (ie, lack of air conditioning, increased pedestrian traffic) could have aggravated the normal effects of heat. Because pollution monitors were interrupted, we were unable to fully analyze pollutant levels. However, we found elevated levels of some pollutants on the day following the blackout. Although this blackout may have decreased pollution from long-range sources such as power generators in the Midwest,²⁴ local pollution sources were also affected, including traffic, public transportation, airlines, and generator use.²⁶,²⁷,³¹ Unusually high pollution levels were likely caused by the blackout, and therefore, they were probably pathways.

TABLE. Effects of the 14–15 August 2003 Blackout on Mortality Risk in New York, NY, by Age and Cause of Death

<table>
<thead>
<tr>
<th>Baseline Mortality: Estimated Mortality for the Blackout Period, Had the Blackout Not Occurred</th>
<th>Percent Increase in Mortality Comparing the Blackout Period to Other Periods (95% Confidence Interval)</th>
<th>Excess Mortality During the Blackout Period</th>
<th>No. Deaths (95% Confidence Interval)⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Deaths</td>
<td>28 (15 to 44)</td>
<td>90 (46 to 138)</td>
<td>28 (15 to 44)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>28 (15 to 44)</td>
<td>90 (46 to 138)</td>
<td>28 (15 to 44)</td>
</tr>
<tr>
<td><65</td>
<td>91</td>
<td>30 (6 to 59)</td>
<td>27 (6 to 53)</td>
</tr>
<tr>
<td>65–74</td>
<td>53</td>
<td>44 (14 to 82)</td>
<td>24 (8 to 43)</td>
</tr>
<tr>
<td>≥75</td>
<td>175</td>
<td>23 (6 to 42)</td>
<td>39 (10 to 73)</td>
</tr>
<tr>
<td>Cause of death</td>
<td>23 (6 to 42)</td>
<td>39 (10 to 73)</td>
<td>23 (6 to 42)</td>
</tr>
<tr>
<td>All nonaccidental</td>
<td>309</td>
<td>25 (12 to 41)</td>
<td>78 (37 to 125)</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>148</td>
<td>26 (7 to 48)</td>
<td>38 (10 to 71)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>21</td>
<td>12 (−27 to 69)</td>
<td>3 (−6 to 15)</td>
</tr>
<tr>
<td>Noncardiorespiratory</td>
<td>140</td>
<td>27 (8 to 48)</td>
<td>37 (11 to 66)</td>
</tr>
<tr>
<td>Accidental</td>
<td>10</td>
<td>122 (28 to 287)</td>
<td>12 (3 to 27)</td>
</tr>
</tbody>
</table>

⁴Confidence intervals of excess mortality incorporate uncertainty in estimates of baseline mortality and of the risk associated with the blackout.

© 2012 Lippincott Williams & Wilkins

Epidemiology • Volume 23, Number 2, March 2012

Mortality Impacts of August 2003 Blackout, New York, NY

© 2012 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
rather than confounders in the relationship between the black-
out and mortality.

Among US cities, New York, NY, may be particu-
larly vulnerable because of its many high-rise buildings
and substantial dependence on public transportation. Other
power outages have lasted longer or been accompanied by
more extreme weather.3,4 Future research may determine
whether health effects observed during this blackout are
found during other blackouts and in other communities.

Our findings indicate that health impacts of power outages

\textbf{FIGURE 2.} Concentrations of pollutants immediately following the black-
ut for (A) O\textsubscript{3}; (B) NO\textsubscript{2}; (C) SO\textsubscript{2}; (D)
CO; and (E) PM\textsubscript{10}. Gray boxes show box plots of hourly distributions for
years. The color of each line corre-
sponds to the monitor of the same
color shown on the accompanying
map. Two extreme outliers are re-
moved in (C); these did not occur
during the power outage.
have been underestimated, which has implications for emergency planning, as well as for assessment of the full impact of national disasters and other events related to blackouts.

REFERENCES

