Publication

Limiting-Stress-Elimination Hypothesis: Using Non-hormonal Biostimulant to Reduce Stress and Increase Savanna Cowpea [Vigna unguiculata (L.) Walp.] Productivity

GP Berlyn and 1 other contributor

On This Page

    Abstract

    An alternative decision axiom to guide in determining the optimal intervention strategy to maximize cowpea production is proposed. According to the decrement from the maximum concept of Mitscherlich, the decrement from the maximum for each stressor must be minimized to produce the absolute maximum production. In crop production, this means all deficient nutrients must be supplemented to ensure maximum yield and laid the foundation in fertilizer formulation. However, its implementation is not economically feasible in many situations, particularly where multiple environmental factors impact crop productivity as in the case of low resource conditions. We propose and test the hypothesis that yield allocation will increase when the most limiting stressor among prevailing stressors is eliminated at least until the next limiting stressor impacts productivity. We selected drought limiting savanna conditions and cowpea (Vigna unguiculata), adapted to nitrogen dependence. To determine the limiting condition, we measured the response of cowpea to D-sorbitol, nitrogen, and non-hormonal biostimulant (nhB) treatments. The nhB treatment increased total biomass by 45% compared to nitrogen, 13%, and D-sorbitol, 17%, suggesting osmotic stress is more limiting in the observed savanna conditions. The effect of the biostimulant is due to antioxidants and key amino acids that stimulate metabolism and stress resistance. Where nitrogen becomes the next constraining factor, biostimulants can contribute organic nitrogen. The study supports the use of biostimulants as candidate intervention under conditions where crop productivity is limited by multiple or alternating constraints during crop growth.