Copper In-Use Stock and Copper Scrap in the State of Connecticut, USA

Jason Rauch, Matthew Eckelman, and Robert Gordon
The Northeast Campus Sustainability Consortium (NECSC) was established in October 2004 to support the growing network of campus sustainability professionals from the Northeast U.S. and maritime Canada. The NECSC is committed to advancing the goals of education and action for sustainable development at colleges and universities in the region.

For more information go to www.yale.edu/sustainability/consortium

The Yale University Office of Sustainability is responsible for facilitating the integration of sustainability principles and practices into the operational functions and educational framework of the institution. This is manifest in the development of policies, practices and standards that lead to decisions which prioritize ecosystem health and human health in the context of economic viability.

For more information go to www.yale.edu/sustainability

Yale F&ES Publication Series
Report Number 10

April 2007

Julie Newman and Lisa Fernandez

Jane Coppock

Conference photos, Michael Marsland

Bryan Gillespie, Yale RIS

Dorothy Scott, North Branford, CT

Yale RIS

100% post consumer, FSC-certified

To download a free PDF of the report or to order printed copies, please go to the Yale F&ES Publication Series website
www.yale.edu/environment/publications

Yale School of Forestry & Environmental Studies

To capture exciting environmental projects at Yale of interest to a broad professional audience, the Yale School of Forestry & Environmental Studies Publication Series issues selected work by Yale faculty, students and colleagues each year in the form of books, bulletins, working papers and reports. All publications since 1995 are available for order as bound copies, or as free downloadable pdfs, at our online bookstore at www.yale.edu/environment/publications. Publications are produced using a print-on-demand system and printed on 100% post consumer FSC-certified paper. For further information or inquiries, contact Jane Coppock, Editor of the F&ES Publication Series, at jane.coppock@yale.edu.

© 2007 Yale School of Forestry & Environmental Studies
Copper In-Use Stock and Copper Scrap in the State of Connecticut, USA

Jason Rauch,* Matthew Eckelman,* and Robert Gordon**

ABSTRACT

During the summer of 2006, the standing in-use stocks and associated discards of copper, centered about the year 2000, were quantified for the State of Connecticut. The methodology, results, and discussion are published here in three parts:

Part A. In-Use Stocks of Copper in the State of Connecticut
Part B. Discard Flows from In-Use Stocks of Copper in the State of Connecticut
Part C. Recycling Rate of Old Scrap Copper in the State of Connecticut

Among the most important and interesting results are as follows:

1) A “bottom-up” assessment of the in-use stocks of copper in the State of Connecticut, circa 2000, yields an overall result of approximately 540 Gg (thousand metric tons) of copper, or 157 kg for every person in the State. Buildings make up the largest category with 53% of the total, with residential buildings as the largest sub-category.

2) The discard flows of copper from in-use stocks were quantified by applying a lifetime analysis to the in-use stock estimates of copper in Connecticut. A total copper mass of 17 Gg/yr (thousand metric tons per year), or 5.1 kg/(capita*year), was discarded from in-use stocks at the beginning of the 21st century. Renovation and demolition debris make up the largest category with 36% of the total, followed by waste from electronic and electrical equipment (26%), transportation (23%), and infrastructure (14%).

3) The recovery rate, recycling efficiency, and recycling rate for copper from in-use stock discards were quantified for the State of Connecticut for the year 2000. With a recovery rate of 84%, and recycling efficiency of 75%, the overall recycling rate was found to be 63%. Neglecting sewage sludge, the lowest recycling rate occurred in end-of-life vehicles and waste from electronic and electrical equipment (45%). A rough estimate combining this old scrap recycling rate with that of new scrap puts the overall recycling rate of copper in Connecticut at approximately 70%.
Acknowledgements

We would like to acknowledge the Copper Development Association for providing funding for this research. We also thank the people of Connecticut for the valuable information they were able to provide in response to our interviews and inquiries.
Table of Contents

PART A: IN-USE STOCKS OF COPPER IN THE STATE OF CONNECTICUT, USA 7

1. OVERVIEW 9
2. METHODS 9

2.1 Transportation 10
 2.1.1 Automobiles 11
 2.1.2 Air 13
 2.1.3 Marine 13
 2.1.4 Rail 15

2.2 Buildings 15
 2.2.1 Residential Structures 15
 2.2.2 Residential HVAC 16
 2.2.3 Residential Buildings – Other 17
 2.2.4 Commercial Structures 17
 2.2.5 Commercial HVAC 18
 2.2.6 Commercial Buildings – Other 19
 2.2.7 Industrial Structures 19
 2.2.8 Industrial HVAC 19

2.3 Equipment 20
 2.3.1 Domestic “White Goods” 20
 2.3.2 Domestic Electrical and Electronic Appliances 20
 2.3.3 Other Residential Equipment 21
 2.3.4 Commercial “White Goods” 22
 2.3.5 Commercial Electric and Electronic Appliances 23
 2.3.6 Other Commercial Equipment 23
 2.3.7 Industrial Machinery 24

2.4 Infrastructure 25
 2.4.1 Water Distribution 25
 2.4.2 Natural Gas Distribution 26
COPPER IN-USE STOCK AND COPPER SCRAP IN THE STATE OF CONNECTICUT

2.4.3 Electric Power Generation
2.4.4 Electric Power Transmission and Distribution
2.4.5 Rail
2.4.6 Streetscape
2.4.7 Telecommunications

3. RESULTS
3.1 Buildings
3.2 Transportation
3.3 Equipment
3.4 Infrastructure
3.5 Comprehensive Results

4. SENSITIVITY AND ERROR

5. DISCUSSION

6. CONCLUSION

ACRONYMS
WORK CITED
APPENDIX

PART B: DISCARD FLOWS OF COPPER FROM IN-USE STOCKS IN CONNECTICUT

1. OVERVIEW

2. METHODOLOGY
2.1 Municipal Solid Waste (MSW)
2.1.1 Total Flow
2.1.2 Copper Content
2.2 Renovation and Demolition Debris (R&DD)
2.2.1 Total Flow
2.2.2 Copper Content
2.3 Waste from Electrical and Electronic Equipment (WEEE)
2.3.1 Total Flow
2.3.2 Copper Content
2.4 End-of-Life Vehicles (ELV)
2.4.1 Total Flow: Automotive
2.4.2 Total Flow: Aircraft
2.4.3 Total Flow: Marine
2.4.4 Total Flow: Rail
2.4.5 Copper Content: Automotive
2.4.6 Copper Content: Air
2.4.7 Copper Content: Marine
2.4.8 Copper Content: Rail

2.5 Sewage Sludge (SS)
2.5.1 Total Flow
2.5.2 Copper Content

2.6 Infrastructural Discards
2.6.1 Total Flow
2.6.2 Copper Content

2.7 Hazardous Waste (HW)
2.8 Industrial Waste (IW)

3. RESULTS
3.1 Renovation and Demolition Debris
3.2 Waste from Electrical and Electronic Equipment
3.3 End-of-Life Vehicles
3.4 Sewage Sludge
3.5 Infrastructural Discards
3.5 Comprehensive Results

4. ERROR
5. DISCUSSION
6. CONCLUSION

ACRONYMS
WORK CITED

PART C: COPPER RECYCLING IN THE STATE OF CONNECTICUT
1. OVERVIEW
2. METHODS
 2.1 Renovation and Demolition Debris (R&DD)
 2.1.1 Recovery Rate
 2.1.2 Recycling Efficiency
2.2 Waste from Electronic and Electric Equipment (WEEE)
 2.2.1 Recovery Rate
 2.2.2 Recycling Efficiency

2.3 Sewage Sludge (SS)
 2.3.1 Recovery Rate
 2.3.2 Recycling Efficiency

2.4 End of Life Vehicles (ELVs)
 2.4.1 Recovery Rate
 2.4.2 Recycling Efficiency

2.5 Infrastructural Discards
 2.5.1 Recovery Rate
 2.5.2 Recycling Efficiency

2.6 Municipal Solid Waste
2.7 Hazardous Waste
2.8 Industrial Waste

3. RESULTS
4. DISCUSSION
6. CONCLUSION
ACRONYMS
WORK CITED
AUTHOR BIOGRAPHIES