logo: Yale Center for Environmental Law & Policy

YCELP News Feed

Section Image

On the Environment

Tuesday, December 11, 2012
| Share

Webinar Recap: Regulating Shale Gas Development

By Guest Author, Nora Hawkins, Yale F&ES '14

On December 5, as part of the Yale Center for Environmental Law and Policy’s ongoing webinar series on Emerging Issues in Shale Gas Development, Florida State Law Professor Hannah Wiseman provided a comprehensive overview of the current legal regimes governing shale gas development, including state and federal statutes, local zoning, agency directives, and the common law.

While shale gas is currently regulated at each of these levels, Professor Wiseman emphasized that states are the central hub in this process because states typically issue the primary permits required to develop shale resources. A significant issue, which Professor Wiseman referred to as the “elephant in the room,” is whether the federal government or the states should take the lead in regulating hydraulic fracturing. (And what the role of local governments should be.) Ultimately, Professor Wiseman suggested that states should continue to play a major role, but she believes that efforts are needed to improve and, to at least some extent, standardize current state regulations.

In her presentation, Professor Wiseman addressed regulatory issues at each phase of the shale gas development process, including regulation of seismic testing, development of access roads and drilling sites, drilling and casing of wells, storage and disposal of drilling waste, water withdrawal, hydraulic fracturing, flowback water, and gas venting and flaring.

This blog focuses on a few regulatory issues that Professor Wiseman discussed in the context of well drilling and casing and hydraulic fracturing. Professor Wiseman’s presentation slides and a recording of her full presentation on "Understanding and Improving Regulation of Shale Gas Development" are available here and here, respectively.

Regulating at the Drilling Stage: Well Casings and Groundwater Contamination

Preventing groundwater contamination is a high priority in shale gas regulation and requires, among other things, effective standards for well casings. In fact, Professor Wiseman noted that one of the most contentious issues that has arisen in shale gas development—the potential for methane contamination of drinking water—is primarily an issue of well drilling and casing rather than of hydraulic fracturing. (Though the term hydraulic fracturing or “fracking” is sometimes used imprecisely to refer to all stages of shale gas development, hydraulic fracturing is but one stage in the process.)

In regulating groundwater pollution from faulty well casings, Professor Wiseman noted that it is crucial to obtain baseline data. If shale gas wells are improperly drilled and cased, groundwater can be contaminated by methane and other pollutants, such as iron, manganese, and dissolved ethane. However, because some groundwater sources have naturally elevated levels of these substances, elevated levels alone are not conclusive evidence of well-related pollution. To address this issue, several states have begun to require water testing both pre- and post-drilling to verify whether well-related contamination of groundwater has occurred.

Due to the so-called “Halliburton Loophole,” which exempts hydraulic fracturing from the federal Safe Drinking Water Act (exept where drillers inject diesel fuel), states are now almost entirely responsible for addressing drilling and fracturing-related groundwater pollution, such as by ensuring that wells are properly cased and cemented. Some states have filled this gap by regulating the types of casing materials that can be used, requiring bond logs, specifying minimum pressures that casings must be able to withstand, setting lengths of time that casings must set before wells can be used, and establishing minimum depths that casings must extend below groundwater.

One regulatory dilemma that Professor Wiseman highlighted is that many states currently apply only narrative standards to shale gas activities. While narrative standards may, on their face, require that certain environmental goals be met (e.g., no leakage from well casings), such standards do not prescribe specific measures (or technologies) to meet their goals, and this lack of implementation guidance can sometimes be problematic for regulators, who must issue permits and assess compliance.

Regulating at the Fracturing Stage: Surface Spills, Air Pollution, and Blowouts

At the hydraulic fracturing stage, one issue that has received considerable public attention is whether or not operators should be required to disclose the chemicals they use during the fracturing process. Professor Wiseman noted that while most states require some type of information disclosure, many do not require full disclosure if drillers consider the chemicals that they use to be “trade secrets.” These limitations create uncertainty about the composition of fracturing fluids, which raises concerns about the full risks of groundwater contamination. Lack of disclosure may also hamper efforts to address surface spills when they occur.

Surface spills are an inherent risk during both the drilling and fracturing phases of shale gas development due to the machinery and chemicals used and stored at the drilling site and the contaminated flowback water produced after fracturing. A variety of spill response laws apply here, including, Professor Wiseman noted, the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) which kicks in if sufficient levels of non-diesel and non-gas contaminants are spilled. But effective prevention of surface spills and, when spills do occur, limitation of their harms also requires pre-drilling measures, such as mandated drilling setbacks from sensitive natural resources. As a precursor to development, some states also require development of spill prevention and control plans and/or mandate that operators obtain environmental pollution coverage in the form of insurance or bonds.

In addition to water quality concerns, well fracturing and subsequent gas production can lead to issues of air pollution. As recently discussed on this blog, states have adopted air quality regulations of varying stringencies. At the federal level, the U.S. EPA also recently issued regulations under the Clean Air Act, which will limit the release of volatile organic compounds.

Two relatively rare but critical risks during the fracturing stage are well explosions and high-pressure emissions of fluids from equipment accidently left open at the surface. To avoid such problems, many states require installation of blowout equipment at well sites, which allows pressure to be controlled and released when necessary.

To learn more about these and other shale gas regulatory issues, you can download Professor Wiseman’s presentation slides here, and view the recording of her webinar here:

Understanding and Improving Regulation of Shale Gas DevelopmentNew Project from YCELP on Vimeo.

Posted in: Environmental Law & GovernanceEnergy & Climate

Page 1 of 1 pages

Blog Home

2007-2010 Yale Center for Environmental Law & Policy | Contact Us | Website by Asirastudio LLC