logo: Yale Center for Environmental Law & Policy

Section Image

On the Environment

Wednesday, March 30, 2011
| Share

EPA Revisits Hydraulic Fracturing and Drinking Water

By testpersona

As oil prices increase and energy security becomes a concern in the US, more is being done to explore cleaner burning fuels such as natural gas. Natural gas has seen big increases in the number of wells and total production as shale gas extraction, in particular, intensifies. The EPA projects that 20% of US gas supply will come from shale gas by 2020.

An EPA report in 2004 found that "there was little to no risk of fracturing fluid contaminating underground sources of drinking water during hydraulic fracturing of coalbed methane production wells." But public concern over the process by which shale gas is extracted  known as hydraulic fracturing, or "fracking," has escalated with the growing number of wells.  Each well requires the pumping of tremendous amounts of fracking fluid into the earth and, according to the EPA's 2004 report, "[t]here is very little documented research on the environmental impacts that result from the injection and migration of these fluids into subsurface formations, soils, and USDWs."  Until last year (when the EPA called for the voluntary reporting of chemicals used in fracking fluids), many of the chemicals used in fracking were unknown.  Chemicals now known to sometimes be involved in the process include: diesel fuel (which contains benzene and other toxic chemicals), polycyclic aromatic hydrocarbons, methanol, formaldehyde, ethylene glycol, hydrochloric acid, and sodium hydroxide. Given this situation, the EPA has announced another study to examine the effects of hydraulic fracturing on drinking water and groundwater.  The EPA aims to issue preliminary findings in 2012 and a full report in 2014.  The draft study plan is available at here.

Posted in: Environmental Performance MeasurementEnvironmental Law & GovernanceEnergy & Climate
Monday, March 28, 2011
| Share

China amends air quality measures but misses key pollutant – PM 2.5

By Guest Author, Angel Hsu

This guest post by Angel Hsu, a doctoral student at the Yale School of Forestry and Environmental Studies, was originally published here.

The Chinese Ministry of Environmental Protection has been drafting new proposals (see rough Google translation in English here) to amend former daily reporting of the Air Pollution Index (API), which has been used the last 20 years to communicate air quality and health hazards posed by air pollution on any given day.  In 2000 the MEP (then the State Environmental Protection Agency, or SEPA) began reporting a daily API for 42 cities; now, data for 113 cities are available from the China National Environmental Monitoring Center.

Although these new specifications are still in draft form, it’s interesting to take a look to see what the MEP is considering, particularly in light of the fact that China’s annual National People’s Congress parliamentary meetings just concluded and approved the 12th Five-Year Plan (full text in Chinese here).  As I’ve written with my colleague Deborah Seligsohn of the World Resources Institute, the new Plan includes an ambitious range of energy and environmental targets, including those for air pollutants like SO2 and for the first time nitrogen oxides (NOx).  While the Plan included a blueprint for major reduction goals for these criteria pollutants, the specifics as to how targets will be allocated and policies implemented still remain to be developed over the coming months by the individual Ministries, provinces, and cities.

These draft AQI guidelines provide some insight as to how monitoring of criteria air pollutants might change as a result of the Plan.  I’ve taken a look at the second draft, which the MEP posted on their website during the last week of February, prior to the release of the 12th FYP.  Most notably, the new specifications appear to reflect a greater attempt by the Chinese MEP to make the former API more consistent with the United States’ Air Quality Index. This effort is reflected through:

  • Renaming the API the “Air Quality Index” to be consistent with the U.S.’s nomenclature.
  • Providing a consistent color classification system identical to the U.S.’s AQI color scheme.
  • Descriptions of health effects of AQI scores in language similar to that used by the AQI
  • Inclusion of new particulates carbon monoxide (CO) and Ozone (O3), which were previously absent from the API
  • Changes to the calculation methodology to reflect the U.S.’s AQI

I’ll spend the rest of this post highlighting some of these proposed changes.

Consistent Communication

Figure 1. Color classifications and descriptions of the new AQI, compared to
previous versions and the US. Sources: MEP, 2011 and Andrews, 2009.


Even though the API was originally based on the United States’ AQI, there are differences in the scale and corresponding health hazard categorizations as well as color classification schemes.  Inconsistencies in color classifications within China are due to the fact that unlike in the United States, where the AQI colors are standardized, local environment protection bureaus (EPBs) in China have been allowed to set their own color schemes.  As Figure 1 depicts, the MEP is proposing a color coding scheme that is entirely consistent with the U.S.’s AQI, unlike the example Andrews (2009) shows of conflicting colors between Beijing and Guangzhou that could be confusing for travelers between the two cities.  Making the colors classifications the same as the United States will also provide more transparency and clarity for those familiar with the U.S. AQI system.

Further, while the descriptions of the AQI classes (i.e. ‘Excellent,’ ‘Good,’ etc.) haven’t changed from the previous API, the descriptions of the Health Effects are similar to those provided by the U.S. EPA.

How is the new AQI calculated?

Remember that the API was determined from only using three pollutants:  SO2, NO2, and PM10. The concentration of each pollutant is measured at various monitoring stations throughout a city over a 24-hour period (noon to noon). The average daily concentration of each pollutant is then converted to a normalized index, which means that each pollutant is given its own API score.  The daily API then only reflects the pollutant with the highest API (see Vance Wagner’s concise explanation on how the API is calculated).

Figure 2. Concentration normalization table for pollutants in the AQI. Source: MEP, 2011. 1) If 1 and 2 are the same, then use 1/2 of 2; 2) Use the concentration limit of Class 2 (TBD); 3) if the concentration of O3 exceeds 0.800 mg/m3 then it exceeds the scale.

As shown in Figure 2, the AQI now includes three additional measures: carbon monoxide (CO), Ozone (O3) – 1 hour average and Ozone (O3) – 8 hour average. The concentrations of each of these six pollutants are normalized according to the table in Figure 2.  The (1),(2), and (3) annotations mean that the MEP is still debating what concentration levels should be. Several options under consideration are found in the “Instruction Manual” document of the draft proposals (in Chinese only).

What is notably missing, however, is a measure of PM 2.5 (air particulates with a diameter of 2.5 microns or less; known to have serious health implications such as asthma, lung cancer, and cardiovascular disease, due to their ability to penetrate human lungs).  Despite the fact that many major countries report PM 2.5 concentration data, some are viewing the lack of PM 2.5 from the new AQI as a major disappointment.

Ma Jun, Director of the Institute of Public and Environmental Affairs (IPE), the Beijing-based NGO who released the Air Quality Transparency Indexwrote about earlier this year, said in a Global Times article that leaving it out was a mistake.

He goes on to say:

“Technology for measuring PM2.5 is not a problem for China any more, as cities in developing countries like New Delhi and Mexico City have already made the index public,” said Ma. He said a reluctance to include the crucial index has to do with concerns about local economies.

“Government agencies feel the index may hurt the image of many cities that want to attract investment or that they may not be able to improve PM2.5 pollution in a short time,” Ma said.

However, contrary to Ma Jun’s assessment that it’s not a technological capacity issue, I wonder if the decision to leave PM 2.5 out of the new AQI isn’t really due to local availability of PM2.5 monitoring technology.  There is a sentence (6.1 地方各级环境保护行政主管部门可根据当地的实际情况和环境保护工作的需要,参照本 标准的要求,增加空气污染物评价项目,如细颗粒物(PM2.5 等)) on Page 4 of the draft proposal that says that local EPBs can consider projects that increase the range of pollutant monitoring, specifically mentioning PM2.5.

On the other hand, one notable improvement in the AQI’s calculation is the change in methodology proposed.  While the U.S.’s AQI is based on the highest reading in a city and thus represents the “worst” air quality case a person could encounter, the Chinese API represents an average.  The draft proposals improve upon the API’s methodology, adopting a similar calculation method to that of the U.S.

First, “individual AQIs” are calculated as follows:

Figure 3. Formula for determining the Individual Air Quality Index (IAQI). Source: MEP, 2011.


IAQIp is the individual AQI;
Cp is the concentration of the six pollutants (SO2, NO2, PM10, CO, O3-1hr and O3-8 hour averages. If a city has more than one monitoring station, the average of the pollutant concentrations are used [对于城市区域为多测点的日均浓度值]).

BP(hi) is the pollutant with the highest concentration
BP(lo) is the pollutant with the lowest concentration
IAQI(hi) is the index score of BP(hi) (on the IAQI 0-500)
IAQI(lo) is the index score of BP(lo) (on the IAQI 0-500)

The max of these IAQIs (Figure 4) is then used to determine the AQI.

Figure 4. Formula to determine the AQI. Source: MEP, 2011.

I will spend some more time going through the longer instruction guidelines for the proposals and will update this post if I find more details. In the meantime, I welcome any comments or alternative interpretations.


Andrews, S.Q. 2009. “Seeing through the Smog: Understanding the Limits of Chinese Air Pollution Reporting.” China Environment Forum, Vol. 10.  http://www.wilsoncenter.org/topics/pubs/andrews_feature_ces10.pdf

Ministry of Environmental Protection. 2011. Technical Regulation on Ambient Air Quality Index Daily Report. Second Draft. Available here:  http://www.mep.gov.cn/pv_obj_cache/pv_obj_id_47B37A70B7A7F94EBAE2DC9709456678C1210400/filename/W020110301385498176520.pdf

Thanks to Chris Haagen for providing some translation assistance.

Posted in:
Friday, March 25, 2011
| Share

As the VSL Turns…: In Value of a Statistical Life Debate at EPA, Moral Decisions Hide Behind Techn

By Guest Author, Douglas Kysar

This post by Yale Law School Professor Doug Kysar was originally published here on the Center for Progressive Reform's website.

A report yesterday from Inside EPA offered a fascinating overview of the agency’s struggle to update the way it assigns dollar values to the suffering and premature death that its regulations prevent. Seriously, as far as economic esoterica goes, this stuff is riveting. What’s more, your life may depend on it.

Currently, EPA values each statistical human life saved by its rules at $7.9 million. This number is derived from so-called “wage-risk premium” studies that examine large data sets on employment and occupational risk. The idea is that, if you control for education, job sector, geographic region, and other relevant factors, then you should be able to come up with a number representing the portion of an employee’s wage that compensates for higher on-the-job health or safety risks. Depending on how a worker values health and safety compared to other goods, he – and he is an important distinction here since the value-of-life studies tend to only look at male-dominated blue collar jobs – might be willing to take a higher wage in exchange for accepting higher levels of occupational risk. In theory, then, the studies can pull out the amount at which workers themselves value risk exposure, which can then be converted into a uniform “value of a statistical life” (VSL) for policy analysis. By using the VSL number to value the health and safety benefits of regulations, EPA can avoid the messy task of government deciding on its own how much protection is worth investing in.

According to the Inside EPA report, staff experts are recommending a new, updated methodology, but the agency’s Environmental Economics Advisory Committee (EEAC) cautioned that the new method might be “too complicated for non-specialists to understand.” This claim is a real howler as it seems to imply that the current methodology is accessible to non-specialists. It is not. Deep and controversial value judgments are embedded within the current methodology, ones that lay persons can scarcely glean. For instance, studies show that union workers receive much higher wage-risk premiums than non-union workers – a finding that suggests bargaining power has a lot to do with the market outcomes that are supposedly capturing individuals’ true “preference” for life preservation. Should EPA use the higher union VSL, rather than the lower non-union VSL that economists tend to favor? This is not a matter of expertise. It is a value judgment that should include a full range of democratic inputs, but its import instead is buried deep within the technicalities of economic regression models.

Apparently the EEAC wants to push EPA even deeper into the weeds by asking the agency to compile a unique VSL figure for each regulatory context that the agency addresses. For instance, if a mercury emissions regulation would disproportionately benefit Native Americans (who eat far more contaminated fish than the general population), then the monetary value of reducing mercury exposure would be calculated using studies that find out how much Native Americans in particular are willing to invest in health and safety. In theory, this would bring the agency closer to the economists’ ideal world in which all values are assessed by the affected individuals themselves, rather than by collective democratic processes. In practice, however, it would involve the government intimately in the perpetuation of discrimination.

The VSL is affected not only by an individual or group’s willingness to invest in health or safety, but also by the ability to do so. This is made clear by the difference between union and non-union VSL data. It is also made clear by studies that show certain minority groups, especially African-Americans, actually receive significantly lower wage-risk premium than should be expected based on their occupational hazard exposure. We might say this represents a weaker “preference” for staying alive among those groups, so that if EPA’s cost-benefit calculations weigh benefits to them at a lower rate than non-minorities, then, well, that’s just giving the people what they “want.” Alternatively, we might say that the picture is messier than this, and that past injustices continue to impact deeply the social and economic opportunities available to individuals and groups today. Treating current market outcomes as somehow neutral and objective does not wash the government’s hands of this history.

The VSL debate is a gripping saga, one with more than a little fiction in it, but with all too real consequences. And it is anything but accessible to non-specialists. For an attempt to break it down in more detail, and for supporting citations, see Chapter 4 of my book, Regulating from Nowhere: Environmental Law and the Search for Objectivity.

Posted in:
Thursday, March 17, 2011
| Share

Cargill Flies a Kite

By Susanne Stahl

Cargill, the international agriculture giant, is installing a 320-square-meter kite on one of its chartered shipping vessels in the hopes of improving fuel efficiency and reducing greenhouse gas emissions.

The kite, made by Hamburg, Germany-based SkySails, is designed to cut fuel consumption by up to 35 percent under ideal sailing conditions. It flies ahead of the ship at a height between 100 meters and 420 meters to generate propulsion; it is computer controlled by an automatic pod to maximize wind benefits and requires only minimal handling by the crew.

"For some time, we have been searching for a project that can help drive environmental best practice within the shipping industry and see this as a meaningful first step," said G.J. van den Akker, head of Cargill's ocean transportation business. "The shipping industry currently supports 90 percent of the world's international physical trade. In a world of finite resources, environmental stewardship makes good business sense. As one of the world's largest charterers of dry bulk freight, we take this commitment extremely seriously."

Cargill transports more than 185 million tons of commodities annually.

Posted in:
Tuesday, March 15, 2011
| Share

A Lens on Nuclear Power

By testpersona

The disaster in Japan has focused new attention on nuclear power in the United States. Here are the basic contours: At present, the U.S. has 104 nuclear plants in 31 states - producing 20% of the nation's electricity. Of the pending proposals to build 30 new units, it is likely that fewer than seven will be built before 2020. No new power plants have been built in the U.S. since the partial meltdown at Three Mile Island in Pennsylvania in 1979. The Obama Administration wants to ramp up nuclear power in the U.S. as part of a plan to increase domestic energy security and meet clean energy targets. In practical terms, that means an investment of $54 billion in U.S. loan guarantees for nuclear energy - loan guarantees are often used to help investors since nuclear power plants are extremely costly to set up, have uncertainty around permit approvals, and often take many years to realize a profit. Read more here.

Posted in: Energy & Climate
| Share

Counting CO2

By Josh Galperin, Associate Director
Perhaps the most intriguing CO2 counter I've come across so far. Check it out here.
Posted in:
Monday, March 14, 2011
| Share

How does China’s 12th Five-Year Plan address energy and the environment?

By Susanne Stahl
This post originally appeared here on the World Resources Institute's website. The post was written by Deborah Seligsohn, WRI's principal advisor on climate and energy in Beijing, and Angel Hsu, doctoral student at the Yale School of Forestry and Environmental Studies. The draft of China's much-anticipated 12th Five-Year Plan was released this Saturday, March 5 at the opening session of the National People's Congress (NPC). The plan will actually be brought to a vote at the close of the session later this week. While there may be some changes to the plan, in past years these have not been large. The 118-page draft of the 12th Five-Year Plan is not yet available online, but we were able to acquire a hard copy to review. In the meantime, Xinhua provided a summary of the major targets included in the 12th Five-Year Plan. In addition, a number of the key reports delivered at the first day of the NPC are also online in both Chinese and English, and these reports include the Work Report issued by Premier Wen Jiabao. Premier Wen's Work Report includes both an assessment of the previous five years and a summary of highlights of the next Five-Year Plan. Our analysis below is derived from both the initial draft of the 12th Five-Year Plan and the Work Report. What's notable in the plan and the work rwoeport is the prominent position of both climate change and environmental issues, in addition to energy. Indeed, not only is this the first Five-Year Plan that mentions climate change, but it is mentioned at the top of the environmental section. There is also a full paragraph detailing China's commitment to international cooperation and the U.N.-led climate negotiation process, including concerns of climate finance and technology transfer. The plan also discusses the need to implement more climate adaptation-related policies, such as greater preparedness for extreme weather events. Energy and climate targets: As expected, there are separate targets for energy intensity (16 percent reduction by 2015) and CO2 emissions per unit GDP (17 percent reduction by 2015). These are within the expected range and congruent with the 40 to 45 percent reduction in carbon intensity from 2005 levels that was first announced in the Copenhagen talks and reaffirmed in Cancun this past November. Clearly defined and distinct energy and CO2 emissions targets will help ensure provinces implement energy policies with carbon goals clearly in mind. Somewhat surprisingly, there was no mention of a total energy consumption target, which was recently announced by China's former minister in charge of the National Energy Administration, Zhang Guobao. It will be interesting to see whether this emerges in the specific energy-sector plan that will come later this spring. The draft plan and work reports also include noteworthy policies in: Forests: China has been steadily increasing forest cover since the founding of the People's Republic in 1949. This next five-year plan goes a significant distance toward meeting China's Copenhagen commitment on forests. In the plan itself the Chinese government set a goal to increase the area of forest cover by 31 million acres by 2015, while in Premier Wen's Work Report, he announced a forest stock volume goal of 785 million cubic yards. While the forest cover area goal seems more or less in line with the already stated 2020 goal to increase forest cover by 98 million acres over 2005 levels, the volume stock target seems more ambitious because it seeks to achieve almost half of the 15-year target of 1.7 billion cubic yards by year 2020. Tracking implementation: To achieve these climate and energy targets, the level of detail and specificity, covering a full range of resource and environmental issues, provided in the plan and the work reports are impressive. Premier Wen stated that China would put in place "well-equipped statistical and monitoring systems for greenhouse-gas emissions, energy conservation and emissions reductions" to ensure these policies are tracked and properly implemented. Efficiency: China has had a particularly successful track record on industrial energy efficiency in the previous five years. In the new plan, there are both new policies to promote greater industrial efficiency, and a major push to include all other sectors of the economy, including both new and existing buildings. For example, the plan introduces a 10,000 Enterprises Program. While we don't have details as to what this program will be, it appears to be a ramp up of the successful Top 1,000 Enterprises Program. We'll certainly be following this development closely in the coming months. Following the endorsement of new types of mechanisms in the October Party Plenum Document, the plan specifically endorses market approaches like energy service companies that help to finance energy efficiency. Transport: While China certainly has plans for additional air and road transport, what is striking is the commitment to rail, both long distance and in urban mass transit. The plan includes proposals for the construction of 21,750 miles of high-speed rail and a goal to connect every city with a population greater than 500,000. There are also plans to improve subway and light rail in cities that already have urban transit systems, building new systems in at least nine other cities, and making plans for six or more cities. We expect to see more detail and perhaps more cities as the sector-specific plan becomes available. Non-fossil energy: The plan incorporates the goal of 11.4 percent non-fossil fuels in primary energy consumption by 2015 announced by Zhang Guobao last month. China continues to exceed earlier targets in non-fossil development. For example, the five-year target for wind is 70 gigawatts of additional installation, which exceeds the 2020 target of just a few years ago. For nuclear, the plan is to install 40 additional gigawatts of capacity by 2015. China currently has around 10 gigawatts of installed nuclear capacity now, which means that if this five-year target is achieved, China is likely to exceed even the expectation of 70 gigawatts by 2020 discussed a year ago. If China achieves these numbers, it will have the world's highest installed capacity of nuclear energy by 2020. Environment: The plan itself does not make clear the specific targets for major environmental pollutants. However, they were all announced at an official NPC-connected press conference. On March 6, Zhang Ping, director of the National Development and Reform Commission, stated that the reduction targets for Chemical Oxygen Demand and Sulfur Dioxide are 8 percent, while ammonia nitrogen and nitrogen oxides are 10 percent. Director Zhang also said that these targets would be made binding for the first time in the 12th Five-Year Plan, as well as an "index evaluation system" implemented to allocate targets to provinces and ensure they are on track to meet reductions. We are not clear on exactly how these targets will be made binding, whether there will be additional documents at this NPC, or whether they will be binding in a later sector-specific plan. While the plan itself is general on targets, it is much more specific on policies. It assigns specific targets for cities required to reach new motor vehicle emission standards and sets goals for a wide variety of environmental infrastructure, including wastewater and solid waste treatment. There is also a strong emphasis on reuse and recycling, or what the Chinese call "circular economy." China is a middle-income, developing country and the next five years is when it needs to put in place the infrastructure that will enable it to develop successfully into a high-income developing country and beyond. There's a clear recognition in these plans of the importance of environmental sustainability in being able to reach not just higher levels of income and but also increased welfare of the Chinese people. The plan itself is highly specific in some areas but also in others somewhat unclear (for instance, target pollutants). Much of the clarity in implementation comes through sectoral plans and later regulations and guidance. We will continue to track policy implementation as it unfolds.
Posted in:
| Share

House Tries to Block EPA From Regulating Greenhouse Gas Emissions

By testpersona

The House Energy and Power Subcommittee approved a bill on Thursday by Fred Upton (R-Mich.), Chairman of the Committee on Energy and Commerce, to halt the EPA’s plans to regulate greenhouse gas emissions. Upton claims that the cap-and-trade legislation and other “needless EPA regulations stifle growth, kill jobs, and raise energy costs.” In December 2010, the EPA announced that it would regulate greenhouse gas emissions from power plants and oil refineries, the nation's two biggest sources of carbon dioxide (accounting for almost 40% of U.S. greenhouse gas emissions), beginning in 2011. The Energy Policy Act of 1992 called for the voluntary reporting of greenhouse gas emissions and carbon sequestration activities, but the EPA is now looking to take the next step by actively regulating these emissions. Read more here

Posted in: Energy & Climate
Thursday, March 10, 2011
| Share

Follow us on Twitter!

By testpersona

Follow us on Twitter @YaleEnviro

Posted in:

Page 1 of 1 pages

Blog Home

2007-2015 Yale Center for Environmental Law & Policy