HEIGHT - DBH BIBLIOGRAPHY
 1932-Present

(70 Entries)

1. Trorey, L.G. (1932) "A Mathematical Method for the Construction of Diameter Height Curves Based on Site." The Forestry Chronicle, 8: 121-132.
2. Stiell, W.M. (1965) "Height Sampling in Red Pine and White Spruce Plantations." The Forestry Chronicle, 41: 175-181.
3. Curtis, R. O. (1967) "Height-diameter and height-diameter-age equations for secondgrowth Douglas-fir." Forest Science 13(4): 365-375.
4. Ek, A. R. (1973). Performance of regression models for the tree height estimation with small sample sizes. IN: Statistics in Forestry Research, Proc. Of IUFRO Suject Group S6.02 meeting, Vancouver, B.C., Canada. August 1973.
5. Stout, B.B. (1973) "Height-Diameter Relations in Trees: An Examination of Greehill's Model." A paper presented in a Joint Meetings S4.01 and S6.02 of International Union of Forest Research Organizations, Vancouver, pp. 159-170.
6. Gideon, R.A and Faurot, J.L. (1977) "A Model Relating Merchantable Length to Tree Diameter and Height". Forest Science, 23: 143-150.
7. Hilt, D. E. and Dale, M. E. (1982) "Height Prediction Equations for Even-Aged Upland Oak Stands". Broomall, Pa.: Northeastern Forest Experiment Station, USDA Forest Services, Research Paper NE-493, p. 9.
8. Flewelling, J.W. (1983) "Estimation of Future Height Growth in Inventory Stands". Research Report; Research and Development, Technical Report, Weyerhaeuser. pp. 6
9. Ek, A.R., Birdsall, E.T. and Spears, R. J. (1984) "A Simple Model for Estimating Total and Merchantable Tree Heights". North Central Forest Experiment Station, USDA Forest Services, Research Note NC-307, pp. 5.
10. Wensel, L.C., Meerschaert, W.J., and Biging, G.S. (1987) "Tree Height and Diameter Growth Models for Northern California Conifers" Hilgardia; A Journal of Agricultural Science Published by California Agricultural Experiment Station" 55 (8): 1-18
11. Wang, C. and Hann, D.W. (1988) "Height - Diameter Equations for Sixteen Tree Species in the Central Western Willamette Valley of Oregon" Forest Research Laboratory, Oregon State University, Corvallis. Research Paper 51. pg. 7
12. West, P. W., Beadle, C.L. and Turnbull, R. A. (1988) "Mechanistically based Allometric models to Predict Tree Diameter and Height in even-aged Monoculture of Eucalyptus regnans F. Muell." Canadian Journal of Forest Research 19: 270-273
13. Bormann, B.T. (1990) "Diameter - based Biomass Regression Models Ignore Large Sapwood-related Variation in Sitka Spruce." Canadian Journal of Forest Research 20: 1098-1104.
14. Yaussy, D.A. and Dale, M.E. (1990) "Merchantable Sawlog and Bole-Length Equations for the Northeastern United States" Research Paper NE-650. Radnor, PA: USDA Forest Services, Northeastern Forest Experiment Station. pp. 7.
15. Omule, S.A.Y. and Macdonald, R.N. (1991) "Simultaneous Curve Fitting for Repeated Height-Diameter Measurements." Can. Journal For. Res. 21:1418-1422
16. Arabatzis, A.A and Burkhart, H.E. (1992) "An Evaluation of Sampling Methods and Model Forms for Estimating Height-Diameter Relationships in Loblolly Pine Plantations." Forest Science, 38: 192-198.
17. Huang, S., Titus, S.J., and Wiens, D.P. (1992) "Comparison of Nonlinear Height Diameter Functions for Major Alberta Tree Species." Canadian Journal of Forest Research 22: 1297-1304
18. Parresol, B.R. (1992) "Baldcypress Height-Diameter Equations and their Prediction Confidence Interval." Canadian Journal of Forest. Research 22: 1429-1434
19. Houghton, D.R. and Gregoire, T.G. (1993) "Minimum Subsamples of Tree Heights for Accurate Estimation of Loblolly Pine Plot Volume." Southern Journal of Applied Forestry, 17 (3): 124-129
20. Flewelling, J.W., and Jong, R. (1994)"Considerations in Simultaneous Curve Fitting for Repeated Height-Diameter Measurements." Canadian Journal of Forest Research 24: 1408-1414
21. Knowe, S.A. (1994) "Effect of Competition Control Treatments on Height-Age and Height-Diameter relationships in young Douglas-fir plantations." Forest Ecology and Management 67: 101-111
22. Oswald, B.P., Zhang, L., Green, T.H., and Stout, S.L. (1994) "Height - Diameter relationships of Dominant Trees in the Mixed Upland Hardwood Forests of North Alabama." A Paper presented at the Eighth Biennial Southern Silvicultural Research Conference, Auburn, AL, Nov. 1-3.
23. Zakrzewski, W.T., and Ter-Mikaelian, M. (1994) "New Application of a Polynomial Curve to Plot Volume Estimation." Canadian Journal of Forest Research 24: 10831088
24. Knowe, S.A., Carrier, B.D., and Dobkowski, A. (1995) "Effects of Bigleaf Maple Sprout Clumps on Diameter and Height Growth of Douglas-Fir." Western Journal of Applied Forestry, 10 (1):5-11.
25. O’Brien, S.T., Hubbell, S. P., Spiro, P., Condit, R. and Foster, R.B. (1995) "Diameter, Height, Crown and Age relationships in Eight Neotropical Tree Species." Ecology 76 (6): 1926 - 1939.
26. Kunisaki, T. and Imada, M. (1996) "DBH - Height Relationship for Japanese Red Pine (Pinus densiflora) in Extensive Natural Forests in Southern Japan." Journal of Forest Planning 2:115-123
27. Moore, J.A., Zhang, L. and Stuck, D. (1996) "Height - Diameter Equations for Ten Tree Species in the Inland Northwest." Western Journal of Applied Forestry, 11(4): 132137.
28. Hokka, H. (1997) "Height-Diameter curves with random intercepts and slopes for Trees growing on drained peatlands." Forest Ecology and Management 97:63-72
29. Zhang, L. (1997) "Cross - validation of Non-linear Growth Functions for Modeling Tree Height-Diameter Relationships." Annals of Botany 79: 251-257
30. Zhang, S., Burkhart, H.E. and Amateis, R. L. (1997) "The Influence of Thinning on Tree Height and Diameter Relationships in Loblolly Pine Plantations." Southern Journal of Applied Forestry 21 (4): 199-205
31. Xiaoxian, Z., Donglan, L., Yuhong, L. and Xinmin, S. (1997) "Formulae of tree height curve and volume curve derived from theory of column buckling." Journal of Forest Research 8(2): 91-93
32. Bechtold, W.A., Zarnoch, S.J. and Burkman, W.G. (1998) "Comparisons of Modeled Height Predictions to Ocular Height Estimates" Southern Journal of Applied Forestry 22 (4): 216-221
33. Martin, F.C. and Flewelling, J.W. (1998) "Evaluation of Tree Height Prediction Models for Stand Inventory." Western Journal of Applied Forestry 13 (4): 109-119.
34. Huang, S. (1999) "Ecoregion-Based Individual Tree Height - Diameter Models for Lodgepole Pine in Alberta." Western Journal of Applied Forestry 14 (4): 186 - 193
35. Tewari, V.P. and v. Gadow, K. (1999) "Modelling the relationship between Tree Diameters and Heights using S_{BB} Distribution." Forest Ecology and Management 119: 171-176 (missing pages: see SBB $\mathbf{S}_{\text {BB }}$ Folder)
36. Zucchini, W. and MacDonald, I.L. (1999) "Illustrations of the Use of Pseudo-Residuals in Assessing the Fit of a Model." In Proceedings of the $14^{\text {th }}$ International Workshop on Statistical Modelling, Graz, Austria. pp. 409-416
37. Hanus, M.L., Hann, D.W. and Marshal, D.D. (2000) "Predicting Height to Crown Base for Undamaged and Damaged Trees in Southwest Oregon". Forest Research Laboratory, Oregon State University, Corvallis. Research Contribution 29. pg. 35
38. Staudhammer, C. and Leemay, V. (2000) "Height prediction equations using Diameter and Stand Density Measures." The Forestry Chronicle 76 (2): 303 - 309.
39. Gilmore, D.W. (2001) "Equations to Describe Crown Allometry of Larix require local validation." Forest Ecology and Management 148: 109-116.
40. Jayaraman, K. and Zakrzewski, W.T. (2001) "Practical Approaches to Calibrating Height-Diameter relationships for Natural Sugar Maple Stands in Ontario." Forest Ecology and Management 148: 169-177.
41. Peng, C. (2001) "Developing and validating nonlinear height-diameter models for major tree species of Ontario’s Boreal Forests." Northern Journal of Applied Forestry 18 (3): 87-94.
42. Wonn, H.T. and O’Hara, K.L. (2001) "Height: Diameter Ratios and Stability Relationships for Four Northern Rocky Mountain Tree Species." Western Journal of Applied Forestry 16 (2): 87-94
43. Yuancai, L. and Parresol, B.N. (2001)"Remarks on Height-Diameter Modeling." Research Note SRS - 10. USDA Forest Services, Southern Research Station. pp. 5.
44. Zucchini, W., Schmidt, M. and v. Godow, K. (2001) "A Model for the Diameter-Height Distribution in an Uneven-Aged Beech Forest and a Method to Assess the Fit of Such Models." Silva Fennica 35 (2): 169-183.
45. Colbert, K.C., Larsen, D.R. and Lootens, J.R. (2002) "Height - Diameter Equations for Thirteen Midwestern Bottomland Hardwood Species." Northern Journal of Applied Forestry 19 (4): 171-176.
46. Li, F., Zhang, L., and Davis, C.J. (2002) "Modeling the Joint Distribution of Tree Diameter and Heights by Bivariate Generalized Beta Distribution." Forest Science 48 (1): 47-58.
47. Vanderschaat, C. and Zeide, B. (2002) "The Effect of Density on the Height-Diameter Relationship." In: Proceedings of the Eleventh Biennial Southern Silvicultural Research Conference (Asheville, NC) U. S. Forest Service General Technical Report SRS-48.
48. Temesgen, H. and v. Gadow, K. (2003). "Generalized height-diameter models- an application for major tree species in complex stands of interior British Colombia." European Journal of Forest Resources 123: 45-51.
49. Calama, R. and Montero, G. (2004) "Interregional Nonlinear Height - Diameter Models with Random Coefficients for Stone Pine in Spain." Canadian Journal of Forest Research 34: 150-163.
50. Inoue, A. and Yoshida, S. (2004) "Allometric Model of Height - Diameter Curve for Japanese ceder (Cryptomeria japonica D. Don) Even - Aged Stands." Journal of Forest Research 9: 2-16
51. Mehtalalo, L. (2004) "A Longitudinal Height-Diameter Model for Norway Spruce in Finland." Canadian Journal of Forest Research, 34: 131-140.
52. Nanos, N., Calama, R., Montero, G., and Gil, L. (2004) "Geostatistical Prediction of Height/Diameter Models." Forest Ecology and Management 195: 221-235.
53. Robinson, A. P. and Wykoff, W. R. (2004) "Imputing missing height measures using a mixed-effects modeling strategy." Canadian Journal of Forest Research 34:2492-2500.
54. Sharma, M. and Zhang, S. Y. (2004)"Height - Diameter Models Using Stand Characteristics for Pinus banksiana and Picea mariana" Scandinavian Journal of Forest Research 19: 442-451.
55. Temesgen, H. and Gadow, K. v. (2004) "Generalized height-diameter models- an application for major tree species in complex stands of interior British Colombia." European Journal of Forest Resources 123:45-51.
56. Zhang, L., Bi, H., Cheng, P. and Davis, C.J. (2004) "Modeling Spatial Variation in Tree Diameter - Height Relationships." Forest Ecology and Management 189: 317-329.
57. Lynch, T.B., Holley, A.G. and Stevenson, D.J. (2005) "A Random-Parameter HeightDbh Model for Cherrybark Oak." Southern Journal of Applied Forestry 29(1): 22-26.
58. Mehtalalo, L. (2005) "A Height-Diameter Model for Scots Pine and Birch in Finland." Silva Fennica 39 (1): 55-66.
59. Dorado, F. C., Dieguez-Aranda, U., Anta, M. B., Rodriguez, M. S. and v. Gadow, K. (2006) "A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain." Forest Ecology and Management 229: 202213.
60. Temesgen, H., Hann, D.W. and Monleon, V.J. (2007) "Regional Height-Diameter Equations for Major Tree Species of Southwest Oregon." Western Journal of Applied Forestry 22(3): 213-219.
61. Adame, P., Rio, M. del and Canellas, I. (2008) "A mixed nonlinear height-diameter model for Pyrenean oak (Quercus pyrenaica Wild.)." Forest Ecology and Management 256: 88-98.
62. Temesgen, H. Monleon, V.J. and H., Hann, D.W. (2008) "Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests." Canadian Journal of Forest Research 38: 553-565.
63. Wang, M., Rennolls, K. and Tang, S. (2008) "Bivariate Distribution Modeling of Tree Diameters and Heights: Dependency Modeling Using Copulas." Forest Science 54 (3): 284-293.
64. Brandeis, T. J., Randolph, K. C. and Strub, M. R. (2009) " Modeling Caribbean tree stem diameters from tree height and crown width measurements." International Journal of Mathematical and Computational Forestry \& Natural Resources 1(2): 78-85.
65. Carlson, C. A., Fox, T. R., Burkhart, H. E., Allen, H. L., and Albaugh, T. J. (2009). Accuracy of subsampling for height measurements in loblolly pine plots. Southern Journal of Applied Forestry 33(3) 145-149.
66. Rupsys, P. and Petraukas, E. (2010). "The bivariate Gompertz diffusion model for tree diameter and height distribution." Forest Science 56(3): 271-280.
67. Vospernik, S. Monserud, R. A. and Sterba, H. (2010) "Do individual-tree growth models correctly represent height:diameter ratios of Norway Spruce and Scots pine?" Forest Ecology and Management 260: 1735-1753.
68. Wang, M. Upadhyay, A. and Zhang, L. (2010). "Trivariate distribution modeling of tree diameter, height, and volume." Forest Science 56(3): 290-300.
69. Cimini, D. and Salvati, R. (2011) "Comparison of generalized nonlinear height-diameter models for Pinus halepensis Mill.and Quercus cerris L. in Sicily (Southern Italy)." Italian Journal of Forest and Mountain Environments 66(5): 395-400.
70. Burkhart, H. E. and Tome, M. (2012) "12.2 Modeling height-diameter relationships." 13pp
